
 Win32 SDK Knowledge Base
Prepared 11/17/93

 Base Topics

 GDI Topics

 Networking Topics

 User Topics

 Tools Topics

 Win32s Topics

 Sample Program Descriptions

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR
ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FORGOING
EXCLUSION OR LIMITATION MAY NOT APPLY.

 Win32 SDK Knowledge Base

 Base Topics

 INF: Two Types of Priority Control Added
 INF: FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING
 Sample: Security API Functions Demonstration
 PRB: SetConsoleOutputCP() Not Functional
 Sample: Common Dialog DLL
 Sample: Determining Drive and File System Type
 Sample: Walking a Directory Tree
 PRB: ERROR_SEM_TIMEOUT Not Documented

 SAMPLE: Process API Functions Example
 Sample: Creating Resource-Only DLLs
 INF: Objects Inherited Through a CreateProcess Call
 Sample: Demonstration of Setting File Attributes
 INF: Correct Use of Try/Finally
 SAMPLE: Simple DLL Demonstration
 Sample: Virtual Memory API Function Demonstration
 INF: NT Consoles Do Not Support ANSI Escape Sequences
 INF: Setting the Console Configuration
 Sample: CreateProcess() Priority Demonstration
 Sample: Demonstration of Setting Console Text Color

 Sample: Asynchronous I/O Demonstration
 Sample: Demonstration of the Console API Functions
 INF: Replacing the Shell (Program Manager)
 INF: Four New Win32 Memory-Handling APIs
 INF: Secure Erasure Under Windows NT
 INF: First and Second Chance Exception Handling
 INF: Thread Local Storage Overview
 INF: CPU Quota Limits Not Enforced

 INF: Using GMEM_DDESHARE in Win32 Programming
 INF: Direct Drive Access Under Win32
 INF: Byte-Ordering in a Data Packet Under NDIS
 INF: Performing a Clear Screen (CLS) in a Console Application
 INF: AllocConsole() Necessary to Get Valid Handles
 INF: How to Specify Shared and Nonshared Data in a DLL
 INF: Precautions When Passing Security Attributes
 INF: Physical Memory Limits Number of Processes/Threads

 INF: Security and Screen Savers
 INF: Preventing the Console from Disappearing
 INF: Detecting Windows NT from a DOS Application
 INF: Apps Should Wait to Free/Re-use WriteFileEx's Buffer
 INF: CreateFile() Using CONOUT$ or CONIN$
 INF: FlushViewOfFile() on Remote Files

 INF: No Way to Cancel Overlapped I/O
 INF: Restriction on Named-Pipe Names

 INF: Getting Real Handle to Thread/Process Requires Two Calls
 INF: Exporting Data from a DLL
 INF: Time Stamps Under the FAT File System
 INF: Dynamic Loading of DLLs Under Windows NT
 INF: Implementing a
 PRB: try/finally with Abort() in try Body
 INF: LIM-EMS Memory Limitations in a Windows NT VDM
 INF: Examining the dwOemId Value

 INF: Win32 Priority Class Mechanism and the START Command
 INF: Creating Windows in Threads
 INF: SHARE.EXE Functionality Built into Windows NT
 PRB: try/finally with return in finally Body Preempts Unwind
 INF: Initiating an Unwind in an Exception Handler
 INF: Using volatile to Prevent Optimization of try/finally
 INF: Icons for Console Applications
 PRB: Maximum Memory Handles
 INF: PAGE_READONLY May Be Used as Discardable Memory

 PRB: Return Values of Performance APIs
 INF: Sharing Win32 Services
 INF: Determining Whether Windows NT Is Running
 INF: Interrupting Threads in Critical Sections
 INF: New DLL: LOCALMON.DLL
 INF: Changes to DLL Makefiles Made for Final Release
 INF: Impersonation Provided by ImpersonateNamedPipeClient()
 INF: Distributed Computing Environment (DCE) Compliance

 INF: Process Will Not Terminate Unless System Is In User-mode
 INF: Non-Address Range in Address Space
 INF: Alternatives to Using GetProcAddress With LoadLibrary
 INF: Gaining Access to ACLs
 INF: Maximum GlobalAddAtom() String Size Is 32K Characters
 INF: Administrator Access to Files
 INF: Passing Security Information to SetFileSecurity()
 INF: Extracting the SID from an ACE
 INF: How to Add an Access-Allowed ACE to a File

 INF: Computing the Size of a New ACL
 PRB: Determining Whether App Is Running as Service or .EXE
 INF: VirtualLock() Only Locks Pages into Working Set
 INF: Trapping Floating-Point Exceptions Under Windows NT
 INF: FormatMessage() Converts GetLastError() Codes
 INF: Validating User Accounts (Impersonation)
 INF: Types of File I/O Under Win32
 INF: FILE_READ_EA and FILE_WRITE_EA Specific Types

 INF: Chaining Parent PSP Environment Variables

 INF: System GENERIC_MAPPING Structures
 INF: Default Stack in Win32 Applications
 PRB: Code in DLL Causes Access Violation C00000005
 INF: Starting and Terminating 16-Bit Windows Applications
 INF: Why LoadLibraryEx() Returns an HINSTANCE
 INF: CTRL+C Exception Handling Under WinDbg
 PRB: New Parameter for the CreateService() API

 INF: The Use of the SetLastErrorEx() API
 INF: Passing a Pointer to a Member Function to the Win32 API
 INF: File Manager Passes Short Filename as Parameter
 INF: Windows NT Virtual Memory Manager Uses FIFO
 INF: Determining Memory Usage Under Windows NT
 INF: Getting the Net Time on a Domain
 INF: Noncontinuable Exceptions
 INF: Validating User Account Passwords Under Windows NT

 PRB: Unexpected Result of SetFilePointer() with Devices
 INF: Limit on the Number of Bytes Written Asynchronously
 INF: Setting File Permissions
 INF: Detecting Closure of Command Window from a Console App
 INF: Definition of a Protected Server
 INF: SetTimer() Should Not Be Used in Console Applications
 INF: Security Attributes on Named Pipes
 INF: Using Temporary File Can Improve Application Performance
 INF: Calling a Win32 DLL from a Win16 Application Under WOW
 INF: Dynamically Growing Named File Mappings

 INF: How Keyboard Data Gets Translated
 INF: Monitoring a Log File for an Event
 BUG: Redirecting Output to an MS-DOS Application
 INF: SetErrorMode() Is Inherited
 INF: Calling CRT Output Routines from a GUI Application
 INF: Getting and Using a Handle to a Directory
 INF: The Use of PAGE_WRITECOPY
 BUG: Problems with Local/Global Memory Management APIs

 BUG: AllocConsole() Does Not Set Error Code on Failure
 INF: Critical Sections Versus Mutexes
 PRB: GetPrivateProfileSection() Can Read Only 32K Sections
 INF: Using NTFS Alternate Data Streams
 INF: RegSaveKey() Requires SeBackupPrivilege
 INF: Identifying a Previous Instance of an Application

 GDI Topics

 Networking Topics

 User Topics

 Tools Topics

 Win32s Topics

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics
 Sample: Saving/Loading Bitmaps in .DIB Format on MIPS

 Sample: World Coordinate Transform
 Sample: AngleArc Demonstration Program
 Sample: Using GetDIBits() for Retrieving Bitmap Information
 Sample: Demonstration of Using System Info API
 Sample: StretchBlt Demonstration
 Sample: Using Region-Related API Functions
 Sample: PlgBlt Demonstration
 SAMPLE: Using Graphic Paths Demonstration
 SAMPLE: PolyBezier() Demonstration

 Sample: GetDeviceCaps() Demonstration Program
 Sample: PolyDraw Function Demonstration
 INF: Use 16-Bit .FON Files for Cross-Platform Compatibility
 Sample: MaskBlt Function Demonstration
 INF: Device Contexts: Using Across Threads
 INF: Transparent Blts in Windows NT
 INF: 16 and 32 Bits-Per-Pel Bitmap Formats
 INF: PSTR's in OUTLINETEXTMETRIC Structure
 INF: Advantages of Device-Dependent Bitmaps

 INF: Set/ModifyWorldTransform() Requires SetGraphicsMode()
 PRB: IsGdiObject() Is Not a Part of the Win32 API
 INF: Use of DocumentProperties() vs. ExtDeviceMode()
 INF: Font-Related APIs & Structures Removed from Win32/NT
 INF: DEVMODE and dmSpecVersion
 INF: Tracking Brush Origins in Windows NT
 INF: Calculating the TrueType Checksum
 INF: Creating a Font for Use with the Console

 INF: Creating a Logical Font with a Nonzero lfOrientation

 Networking Topics

 User Topics

 Tools Topics

 Win32s Topics

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics

 Networking Topics
 INF: Windows Socket API Specification Version 1.1

 INF: Writing a Telnet Client
 INF: Supported Versions of Windows Sockets
 INF: Using RPC Callback Functions
 PRB: RPC Installation Problem

 User Topics

 Tools Topics

 Win32s Topics

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics

 Networking Topics

 User Topics
 PRB: AttachThreadInput() Resets Keyboard State

 INF: Global Classes in Win32
 Sample: Common Dialog DLL
 SAMPLE: Standard DLL & Ex. of Creating a Custom Control Class
 INF: DDEML Application-Instance IDs Are Thread Local
 SAMPLE: WM_COMMNOTIFY Message is Obsolete

 Sample: SUBCLASS Program Demonstration
 Sample: Communications API Function Demonstration
 INF: Freeing PackDDElParam() Memory
 INF: System Versus User Locale Identifiers
 INF: Multiline Edit Control Limits in Windows NT
 INF: Use of DLGINCLUDE in Resource Files
 INF: Multiple Desktops Under Windows NT
 INF: Clarification of COMMPROP Max?xQueue Members

 INF: OpenComm() and Related Flags Obsolete Under Win32
 INF: Window Message Priorities
 INF: Distinguishing Between Keyboard ENTER and Keypad ENTER
 PRB: Setting Hooks Locally or Globally
 INF: NULL is a Valid Return From SetWindowsHook()
 INF: LB_GETCARETINDEX Returns 0 for Zero Entries in List Box
 INF: SetActiveWindow() and SetForegroundWindow() Clarification
 INF: Possible Serial Baud Rates on Various Machines
 INF: Memory Handles and Icons

 INF: Debugging a System-Wide Hook
 INF: WM_ENTERIDLE Documentation Is Misleading
 INF: How to Make SPINCUBE a Global Class
 INF: The SBS_SIZEBOX Style
 SAMPLE: Control Panel Application Sample
 INF: Clarification of the
 PRB: CloseClipboard() Suggests Calling DuplicateHandle()
 INF: Differences Between hInstance on Win 3.1 and Windows NT
 INF: Propagating Environment Variables to the System

 INF: 32-Bit Scroll Ranges
 INF: COMCTL32 APIs Unsupported in the Win32 SDK
 INF: Cancelling WaitCommEvent() with SetCommMask()
 INF: Win32 Shell Dynamic Data Exchange (DDE) Interface
 INF: Win32 Drag and Drop Server

 INF: ClipCursor() Requires WINSTA_WRITEATTRIBUTES
 INF: Retrieving DIBs from the Clipboard

 Tools Topics

 Win32s Topics

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics

 Networking Topics

 User Topics

 Tools Topics
 INF: NEW.H Does Not Contain new() that Takes a void*

 INF: Win32 Equivalents for C Run-Time Functions
 Sample: Writing NTSD Extensions
 INF: Using a Mouse with MEP Under Windows NT

 INF: Macros to Facilitate Porting Applications to Windows NT
 INF: Correct Use of Try/Finally
 INF: Concatenating Resource Files Does Not Work on Windows NT
 INF: RCDATA Begins on 32-Bit Boundary in Windows NT
 PRB: Win32s: GetVolumeInformation Returns Incorrect Values
 PRB: LIB.EXE: Adding Object Documentation Error
 PRB: Problems Using COMM APIs and the DCB Structure on MIPS
 INF: LIB32.EXE Converts Object Files to COFF Format
 INF: Microsoft Implementation of Bit Fields in cl386 Compiler

 INF: OS/2-to-Windows Migration Information
 INF: Source-level Debugging Under NTSD
 INF: Preserving Case When Assembling /Fa Listing
 PRB: Debugging the Open Common Dialog Box in WinDbg
 INF: Win32 Subsystem Object Cleanup
 INF: Using MFC Build Clean Option
 INF: Warning C4056: Overflow in Floating Point

 INF: Unicode Conversion to Integers
 INF: How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution
 INF: MFC TRACE Output Not Working
 INF: WinDbg
 INF: Fatal Error C1001: ICE ('msc1.cpp', line 555)
 INF: Windows NT Compiler Always Includes chkstk()
 PRB: Windows NT: Inline Assembly Code Generation Error
 INF: Fatal Error C1056: Out of Macro Expansion Space

 INF: Fatal Error C1001: ICE (file 'msc1.cpp', line 555)
 INF: Setting Dynamic Breakpoints in WinDbg
 INF: Base Date for Time Differs Between NT and C/C++ 7.0
 INF: CTYPE Macros Function Incorrectly
 INF: Calling Conventions Supported by the 32-Bit Compiler
 PRB: Debugging an Application Driven by MS-TEST
 INF: Format for LANGUAGE Statement in .RES Files

 INF: Microsoft NT C++ Is AT&T 2.1 Compatible
 INF: Usage of the afx_msg Type

 INF: Tips for Writing Multiple-Language Scripts
 INF: Writing Multiple-Language Resources
 INF: Using Communal Variables in MASM386
 INF: Default Alignment of Structures and Classes
 INF: Enabling Disk Performance Counters
 PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32
 PRB: Selecting Overlapping Controls in Dialog Editor

 PRB: Data Section Names Limited to Eight Characters
 INF: Retrieving the CMDIChildWnd Parent Window
 INF: MIPS Compiler Does Not Support __inline
 INF: Memory Management Via Malloc()
 INF: Using Cout in an Application and DLL
 INF: Interpreting Executable Base Addresses
 INF: Calculating String Length in Registry

 INF: Order of Object Initialization Across Translation Units
 INF: Changes to wsprintf/wvsprintf Formatting
 INF: %S, %B, %C, printf() Format Specifier Changes
 INF: Getting Windows NT Executable Header Information
 INF: WinMain() Arguments in Unicode
 INF: Using volatile to Prevent Optimization of try/finally
 INF: Postmortem Debugging Under Windows NT
 INF: Use of DLGINCLUDE in Resource Files
 INF: Warning 0505: No Modules Extracted from 'FILENAME.LIB'

 PRB: GP Fault in OS/2 Subsystem
 INF:    Cross-Platform Development Under Windows NT
 PRB: Internal Compiler Error msc1.cpp, Line 555
 PRB: LINK32.EXE(): Extended Error - File Not Found
 INF: Using the -ROM Linker Switch
 INF: Win32 .DEF File Usage in Applications and DLLs
 INF: Win32 SDK Sample Build Warnings

 INF: LINK32 Implements New Switch: -adjust:#
 INF: Size Comparison of 32-Bit and 16-Bit x86 Applications
 INF: CTRL+C Exception Handling Under WinDbg
 INF: Debugging DLLs Using WinDbg
 INF: Debugging Console Apps Using Redirection
 PRB: Building POSIX Applications Under the March Beta
 INF:
 INF: Watching Local Variables That Are Also Globally Declared
 INF: Migrating Windows NT Program Groups and the Desktop
 INF: Conforming to ANSI C Standards

 PRB: Default Section Alignment Is 0x10000 (64K) by Default
 PRB: Cannot Compile from Win32 SDK M Editor (MEP.EXE)
 INF: UNICODE and _UNICODE Needed to Compile for Unicode

 INF: Specifying Filenames Under the POSIX Subsystem
 PRB: WM_QUERYOPEN Incorrectly Prototyped in WINDOWSX.H
 INF: Using SetThreadLocale() for Language Resources
 INF: Compile Errors Caused by Missing Option -D_X86_
 PRB: Running Early Apps Results in Error w/ RtlExAllocateHeap
 INF: Undocumented Warning C4509

 INF: Example of Importing Functions
 PRB: Error in Win32 SDK Install Program MANUAL.BAT
 PRB: Destructor for Class in a DLL Called Twice
 INF: Choosing the Debugger That the System Will Spawn
 INF: Symbolic Information for System DLLs
 INF: Cannot Load <exe> Because NTVDM Is Already Running
 PRB: Win32 SDK and VC++ NT Help Files Are Incompatible
 INF: Development Tools Do Not Accept Unicode Text

 INF: Viewing Globals Out of Context in WinDbg
 PRB: RC Does Not Support __DATE__ or __TIME__
 PRB: Unable to Freeze One Thread in WinDbg
 PRB: WinDbg FIND Dialog Box Slows Down the System
 INF: Debugging the Win32 Subsystem
 INF: Differences Between the Win32 SDK and 32-Bit VC++
 INF: Listing the Named Shared Objects
 INF: Additional Remote Debugging Requirement

 PRB: Problems with the Microsoft Setup Toolkit

 Win32s Topics

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics

 Networking Topics

 User Topics

 Tools Topics

 Win32s Topics
 INF: Win32s Stacks Limited to 128K

 INF: Description of Win32s API
 INF: Use 16-Bit .FON Files for Cross-Platform Compatibility
 INF: Support for Sleep() on Win32s

 INF: Win32s Translated Pointers Guaranteed for 32K
 INF: Calling a Win32 DLL from a Windows 3.1 Application
 INF: Win32s Message Queue Checking
 PRB: _getdcwd() Returns Incorrect Information Under Win32s
 PRB: GetVersion() Returns Invalid Value Under Win32s
 INF: Debugging Win32s Applications
 INF: GetCommandLine() Under Win32s
 INF: Win32s Cannot Support _environ in DLLs
 INF: Debugging Universal Thunks

 INF: Using Windows Sockets Under Win32s and WOW
 INF: Win32s and Windows NT Timer Differences
 INF: Using Serial Communications Under Win32s
 INF: Using VxDs and Software Interrupts Under Win32s
 INF: Getting Resources from 16-Bit DLLs Under Win32s
 INF: Sharing Memory Between 32-Bit and 16-Bit Code on Win32s

 Sample Program Descriptions

 Win32 SDK Knowledge Base

 Base Topics

 GDI Topics

 Networking Topics

 User Topics

 Tools Topics

 Win32s Topics

 Sample Program Descriptions
 Sample: Security API Functions Demonstration

 Sample: Saving/Loading Bitmaps in .DIB Format on MIPS
 Sample: Common Dialog DLL
 Sample: Determining Drive and File System Type

 Sample: Walking a Directory Tree
 Sample: World Coordinate Transform
 Sample: AngleArc Demonstration Program
 Sample: Using GetDIBits() for Retrieving Bitmap Information
 Sample: Writing NTSD Extensions
 SAMPLE: Process API Functions Example
 Sample: Using Thread API Functions
 Sample: Demonstration of Using System Info API
 Sample: StretchBlt Demonstration
 Sample: Creating Resource-Only DLLs
 SAMPLE: Standard DLL & Ex. of Creating a Custom Control Class
 Sample: Using Region-Related API Functions

 Sample: PlgBlt Demonstration
 SAMPLE: Using Graphic Paths Demonstration
 SAMPLE: PolyBezier() Demonstration
 Sample: Demonstration of Setting File Attributes
 Sample: GetDeviceCaps() Demonstration Program
 Sample: PolyDraw Function Demonstration
 SAMPLE: Simple DLL Demonstration
 Sample: Using Timers in Windows NT
 Sample: Using Anonymous Pipes to Capture Child Process Output
 Sample: Virtual Memory API Function Demonstration
 Sample: SUBCLASS Program Demonstration
 Sample: CreateProcess() Priority Demonstration

 Sample: Code Demonstration to Put a DACL on Floppy Disk Drives
 Sample: MaskBlt Function Demonstration
 Sample: WNet API Function Demonstration
 Sample: Demonstration of Setting Console Text Color

 Sample: Asynchronous I/O Demonstration
 Sample: Communications API Function Demonstration
 Sample: Demonstration of the Console API Functions
 Sample: Distributed Bounded Buffer Solution (DBBS)
 Sample: Demonstrating GDI and User APIs in Fractals

 SAMPLE: Demonstration of the Win32 Font API Functions
 SAMPLE: A Simple Service
 SAMPLE: Enhanced Metafile Editor
 SAMPLE: File I/O API Functions Demonstration
 Sample: Demonstration of Journal Hooks Under Win32
 Sample: Dynamic Dialog Box Creation
 SAMPLE: Win32s Universal Thunks
 Sample: How to Reboot or Shut Down Programmatically

 Sample: Creating a WinDbg Extension
 Sample: DDEML API Demonstration
 Sample: Demonstration of the Win32 Debug API
 Sample: GUIGREP File Manager Extension Sample
 Sample: Demonstration of Using GetLocaleInfoW
 Sample: Multiple Document Interface Demonstration
 Sample: How to Share Memory Between Processes
 Sample: Demonstrating the Creation of Multiple Threads

 Sample: Constructing and Using a Message Table Resource
 Sample: Sharing Named Memory Between Two Processes
 Sample: Platform Detection
 Sample: Demonstration of Printing with Windows NT
 Sample: Named Pipe Client/Server Demonstration
 Sample: Read/Write Synchronization Demonstration
 Sample: Using API Functions to Access the Registry
 Sample: Fractal Screen Saver Demonstration

 Sample: Using Semaphores to Control Threads
 Sample: Demonstration of Opening and Terminating a Process
 Sample: Using TLS to Store Thread-Specific Data in a DLL
 Sample: World Coordinate Transforms
 SAMPLE: Primitive Drag and Drop Unicode Input Method
 Sample: WINDIFF Source Included as an SDK Sample
 SAMPLE: Monitoring System Events
 SAMPLE: Examining Security Descriptors (SDs)

 Sample: Using Based Pointers to Share Memory
 SAMPLE: Event Logging
 Sample: Combo Boxes and Owner-Draw Techniques
 SAMPLE: Demonstration of the Windows Sockets API

Article ID: Q94088

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 I have set a WSAAsyncSelect() call to notify me of read (FD_READ) and
 disconnection (FD_CLOSE). When a read call is posted on my message
 queue, I continually read from the socket until there are no more
 characters waiting. After each read, I use a select() call to determine
 if more data needs to be read. However, after a while, the notifications
 stop coming. Why is this?

CAUSE
 The message queue must be cleared of extraneous notification messages
 for each read notification message.

RESOLUTION
 Call WSAAsyncSelect(sockt, hWnd, 0, 0) to clear the message queue for
 each read notification.

More Information:

Sample Code

WSA_READCLOSE:
 if (WSAGETSELECTEVENT(lParam) == FD_READ) {

 FD_ZERO(&readfds);
 FD_SET(sockt, &readfds);

 timeout.tv_sec = 0;
 timeout.tv_usec = 0;

 /* Clear the queue of any extraneous notification messages. */

 WSAAsyncSelect(sockt, hWnd, 0, 0);

 while (select(0, &readfds, NULL, NULL, &timeout) != 0) {
 recv(sockt, &ch, 1, 0);
 }

 /* Reset the message notification. */

 WSAAsyncSelect(sockt, hWnd, WSA_READCLOSE, FD_READ | FD_CLOSE);
 }

Additional reference words: 3.10 3.1

INF: Two Types of Priority Control Added
Article ID: Q91129

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Due to overwhelming demand, Microsoft added two new types of priority
control to the existing types:

 THREAD_PRIORITY_TIME_CRITICAL
 THREAD_PRIORITY_IDLE

In addition, a new priority class has been added: REALTIME_PRIORITY_CLASS.
This affects CreateProcess(), SetPriorityClass(), and GetPriorityClass(). The
SeIncreaseBasePriorityPrivilege is required to use this class:

Therefore, the priority spectrum is organized as follows.

Fixed Priorities

 31 - Realtime Class, THREAD_PRIORITY_TIME_CRITICAL
 .
 .
 26 - Realtime Class, THREAD_PRIORITY_HIGHEST
 25 - Realtime Class, THREAD_PRIORITY_ABOVE_NORMAL
 24 - Realtime Class, THREAD_PRIORITY_NORMAL
 23 - Realtime Class, THREAD_PRIORITY_BELOW_NORMAL
 22 - Realtime Class, THREAD_PRIORITY_LOWEST
 .
 .
 16 - Realtime Class, THREAD_PRIORITY_IDLE

Variable Priorities

 15 - Any Class, THREAD_PRIORITY_TIME_CRITICAL,
 High Class, THREAD_PRIORITY_HIGHEST
 14 - High Class, THREAD_PRIORITY_ABOVE_NORMAL
 13 - High Class, THREAD_PRIORITY_NORMAL
 12 - High Class, THREAD_PRIORITY_BELOW_NORMAL
 11 - High Class, THREAD_PRIORITY_LOWEST
 Foreground Normal Class, THREAD_PRIORITY_HIGHEST
 10 - Foreground Normal Class, THREAD_PRIORITY_ABOVE_NORMAL
 9 - Foreground Normal Class, THREAD_PRIORITY_NORMAL
 Background Normal Class, THREAD_PRIORITY_HIGHEST
 8 - Foreground Normal Class, THREAD_PRIORITY_BELOW_NORMAL
 Background Normal Class, THREAD_PRIORITY_ABOVE_NORMAL
 7 - Foreground Normal Class, THREAD_PRIORITY_LOWEST

 Background Normal Class, THREAD_PRIORITY_NORMAL
 6 - Background Normal Class, THREAD_PRIORITY_BELOW_NORMAL
 Idle Class, THREAD_PRIORITY_HIGHEST
 5 - Background Normal Class, THREAD_PRIORITY_LOWEST
 Idle Class, THREAD_PRIORITY_ABOVE_NORMAL
 4 - Idle Class, THREAD_PRIORITY_NORMAL
 3 - Idle Class, THREAD_PRIORITY_BELOW_NORMAL
 2 - Idle Class, THREAD_PRIORITY_LOWEST
 1 - Any Class, THREAD_PRIORITY_IDLE

More Information:

Within a class, the thread priority controls allow you to make two points
around the normal priority for the class:

 24 - Realtime Base
 13 - High Base
 9 - Forground Normal Base
 7 - Background Normal Base
 4 - Idle Base

In addition, two new thread controls allow you to position a thread as far
from your base as possible in either the dynamic or fixed priority ranges:

 31 - Time-critical fixed priority
 16 - Idle fixed priority

 15 - Time-critical variable priority
 1 - Idle variable priority

Note that using priorities above 11 will interfere with the normal
operation of the system. Using any of the real-time priorities may cause
disk caches to not flush, hang the mouse, and so forth. Extreme care should
be exercised whenever raising priority.

Additional reference words: 3.10 3.1

INF: FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING
Article ID: Q99794

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.10

Summary:

The FILE_FLAG_WRITE_THROUGH flag for CreateFile() causes any writes
made to that handle to be written directly to the file without being
buffered. The data is cached (stored in the disk cache); however, it
is still written directly to the file. This method allows a read
operation on that data to satisfy the read request from cached data
(if it's still there), rather than having to do a file read to get the
data. The write call doesn't return until the data is written to the
file. This applies to remote writes as well--the network redirector
passes the FILE_FLAG_WRITE_THROUGH flag to the server so that the
server knows not to satisfy the write request until the data is
written to the file.

The FILE_FLAG_NO_BUFFERING takes this concept one step further and
eliminates all read-ahead file buffering and disk caching as well,
so that all reads are guaranteed to come from the file and not from
any system buffer or disk cache. When using FILE_FLAG_NO_BUFFERING,
disk reads and writes must be done on sector boundaries, and buffer
addresses must be aligned on disk sector boundaries in memory.

These restrictions are necessary because the buffer that you pass to
the read or write API is used directly for I/O at the device level; at
that level, your buffer addresses and sector sizes must satisfy any
processor and media alignment restrictions of the hardware you are
running on.

More Information:

If you have a situation where you want to flush all open files on the
current logical drive, this can be done by:

 hFile = CreateFile("\\\\.\\c:",);
 FlushFileBuffers(hFile);

This method causes all buffered write data for all open files on the
C: partition to be flushed and written to the disk. Note that any
buffering done by anything other than the system is not affected by
this flush; any possible file buffering that the C run time is doing
on files opened with C run-time calls is unaffected.

Additional reference words: 3.10

Sample: Security API Functions Demonstration
Article ID: Q85397

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SIDCLN sample demonstrates some of the Win32 security
API functions, and provides a sample of how a utility could
be written that recovers on-disk resources remaining
allocated to deleted user accounts.

More Information:

The on-disk resources recovered are:

 Files that are still owned by accounts that have been
 deleted are assigned ownership to the account logged on
 when this sample is run.

 ACEs for deleted accounts are edited (deleted) out of
 the ACLs of files to which the deleted accounts had been
 granted authorizations (eg., Read access)

It may be that running this sample as a utility has no
practical value in many environments, as the number of files
belonging to deleted user accounts will often be quite
small, and the number of bytes recovered on disk by editing
out ACEs for deleted accounts may well not be worth the time
it takes to run this sample. The time it takes to run this
sample may be quite significant when processing an entire
hard disk or partition

Note: This sample is not a supported utility.

TO RUN:

 You must log on using an account, such as Administrator,
 that has the priviledges to take file ownership and edit
 ACLs

 The ACL editing part of this sample can only be
 excercised for files on a partition that has ACLs NT
 processes: NTFS

Typical test scenario: Create a user account or two, log on
as each of these accounts in turn, while logged on for each
account, go to an NTFS partition, create a couple of files
so the test accounts each own a few files, use the file
manager to edit permissions for those files so that each

test user has some authorities (e.g., Read) explicitly
granted for those files. Logon as Administrator, authorize
each test user to a few Administrator-owned files. Delete
the test accounts. Run the sample in the directories where
you put the files the test accounts owned or were authorized
to.

PRB: SetConsoleOutputCP() Not Functional
Article ID: Q99795
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOMS

SetConsoleOutputCP() apparently has no effect.

CAUSE

SetConsoleOutputCP() was designed to change the mapping of the 256
8-bit character values into the glyph set of a fixed-pitch Unicode
font, rather than loading a separate, non-Unicode font for each call
to SetConsoleOutputCP(). Unfortunately, a fixed-pitch Unicode font was
not available by release time, so you can't view the effects of the
SetConsoleOutputCP() application programming interface (API) because
the currently available console fonts are not Unicode fonts.

STATUS

Microsoft has confirmed this to be a limitation in Windows NT version
3.1. We will post new information here in the Microsoft Knowledge Base
as it becomes available.

Additional reference words: 3.10

Sample: Common Dialog DLL
Article ID: Q81703

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A sample demonstrating the use of all of the common dialog
box functions in the Win32 API is now available.

More Information:

Each dialog box is demonstrated being used in three
different ways: standard, using a hook function, and using a
modified template.

Additional reference words:

ChooseColor, ChooseFont, GetOpenFileName, GetSaveFileName

Sample: Determining Drive and File System Type
Article ID: Q81719

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A demonstration of how the GetDriveType and
GetVolumeInformation functions determine all logical drives
on a system, their disk type (local, remote, CD-ROM, and so
on), and their file system type (FAT, HPFS, and so on) is
available in a sample file named DRIVES.

More Information:

The additional API functions, GetLogicalDrives and
GetLogicalDriveStrings, are not required to determine the
drive and file system type, but are included as an example
of how these API functions can enhance the efficiency of
disk querying API calls.

When a drive type is removable (for example, a floppy disk
drive), then additional precautions are taken before
accessing this drive. A validation check is made to see if
media exists in the drive before proceeding. A simple test
of opening any file in the root directory of the removable
media drive using the OpenFile API function determines the
media's presence. If the OpenFile call returns a handle,
then media is present and further disk querying calls are
safely made on the logical drive. If the OpenFile call
fails, then no media is present and no further attempts to
query this drive are allowed. Note: in order to eliminate an
unwanted pop-up, prompting the user to insert a disk in the
drive, from being generated by the operating system, the
error mode is temporarily adjusted, using SetErrorMode, to
allow any OpenFile errors to immediately return to the
calling routine.

Sample: Walking a Directory Tree
Article ID: Q81720

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A demonstration of how to recursively find all
subdirectories under the current working directory is
available in a sample file named WALK.

The WALK sample can be found in the \Q_A\SAMPLES\WALK
directory.

More Information:

Starting with the current working directory, a call is made
to the Walk function which will find all subdirectories in
the current working directory. When a subdirectory is found,
the current working directory is changed to this
subdirectory and another, recursive call is made to Walk,
which again will find all subdirectories in this new current
working directory. Once all subdirectories for the current
working directory have been found, the current working
directory is changed up one level (..). When the original
current working directory is re-entered, then the recursive
process stops.

Additional reference words:

FindFirstFile, GetCurrentDirectory, SetCurrentDirectory
FindNextFile, GetFileAttributes

PRB: ERROR_SEM_TIMEOUT Not Documented
Article ID: Q98720

--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 A call to WaitNamedPipe() fails, and GetLastError() returns:

 ERROR_SEM_TIMEOUT (121)

CAUSE
 The call to WaitNamedPipe() fails due to an elapsed time-out
 interval.

STATUS
 This probable error is missing from the documentation. This
 probable error return is also missing for all functions that might
 time out, such as WaitForSingleObject().

Additional reference words: 3.10

SAMPLE: Process API Functions Example
Article ID: Q81825

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The PROCESS sample application provides a simple interface to the
CreateProcess() and TerminateProcess() functions. To create a process,
the user is presented with a common dialog box for selecting a file.
In this case, the file must have an extension of .EXE. Processes that
are started are presented in a list box. Any of the processes can be
selected in the list box and then terminated.

This sample is included with the Microsoft Win32 Software Development
Kit for Windows NT. For additional information on obtaining a copy of
the Win32 SDK, contact the Microsoft Developer Services Team at (800)
227-4679, ext 11771.

Warning: "TerminateProcess() is used to cause all of the threads
within a process to terminate. While TerminateProcess() will cause all
threads within a prcess to terminate, and will cause an application to
exit, it does not notify DLLs that the process is attached to that the
process is terminating. TerminateProcess() is used to unconditionally
cause a process to exit. It should only be used in extreme
circumstances. The state of global data maintained by DLLs may be
compromised if TerminateProcess() is used rather than ExitProcess()."

Additional reference words: 3.10

Sample: Creating Resource-Only DLLs
Article ID: Q85915

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The RESDLL sample shows how to create a resource-only
dynamic link library (DLL). In short, this is accomplished
by creating and resource-compiling a resource (.RC) file,
and then linking it correctly.

The MAIN.EXE program tests THE_DLL.DLL by loading it and
referencing the DLL's icon, cursor, and bitmap. The icon
and cursor are used by the registered window class, and
the bitmap is used in painting the client area.

INF: Objects Inherited Through a CreateProcess Call
Article ID: Q83298

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following is a list of objects that are inherited through the
CreateProcess() call.

More Information:

The objects inherited by a process are those objects that you can get
a handle to, and that you can use the CloseHandle() function on. These
objects include the following:

 Processes
 Events
 Semaphores
 Mutexes
 Files (including file mappings)
 Console input or output

However, the new process will only inherit objects that were marked
inheritable by the old process.

These are duplicate handles. Each process maintains memory for its own
handle table. If one of the processes modifies its handle (for
example, closes it or changes the mode for the console handle), other
processes will not be affected.

Processes will also inherit environment variables, the current
directory, and priority class.

Sample: Demonstration of Setting File Attributes
Article ID: Q85917

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SETINFO sample shows how to get and set information on file
date, time, attributes, and size. SETINFO demonstrates much of the
functionality of OS/2's DosQFileInfo() and DosSetFileInfo().

More specifically, the SETINFO sample shows how to set file attributes
and how to modify file and date times (and how to do the conversions
from file time to DosTime, and so on). To use the sample file, enter a
filename in the appropriate edit field and choose the Get Info.
button. To set file attributes or file date and time information,
modify the values in the edit fields and check buttons, and choose the
Set Info. and Set Attr. buttons. To slow down the return code
reporting, enter a larger value into the time edit field, and choose
the Set Time button.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

INF: Correct Use of Try/Finally
Article ID: Q83670

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Try/finally, used correctly, helps to provide a robust application.
However, if used incorrectly it can cause unnecessary overhead. any
flow of control out of the try body of try/finally is an abnormal
termination that can cause hundreds of instructions to be executed on
an x86 system, and thousands on a MIPS machine, even if control leaves
the try body via a control statement on the very last statement of the
try body. The language definition states that control must leave the
try body sequentially for normal termination to occur (that is,
execution falls through the bottom of the try body).

The following sample demonstrates an incorrect use of try/finally:

/* Incorrect use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 return;
 }
 .
 .
 } finally {
 .
 .
 }
 return;
}

The overhead can be avoided in the above example by moving the return
AFTER the end of the finally clause. The following provides more
detail on the correct use of try/finally.

More Information:

Execution of a termination handler due to abnormal termination of a
try body is expensive. Abnormal termination occurs when control leaves
a try body in any way other than by falling through the bottom.
Intentionally branching out of a try body is still an abnormal
termination.

In the above example, abnormal termination of the try body occurs if
the return in the middle of the try body is executed. If the predicate
of the if is false, then extremely efficient execution of the finally
clause occurs because this is not abnormal termination and the finally
clause is called directly by inline code.

When abnormal termination occurs hundreds to thousands of instructions
are executed because an unwind must be executed, which must search
backward through frames to determine if any termination handlers
should be called. On an x86 system, this executes the C run-time
handler and examines the handler list. On a MIPS machine, this also
causes the function table to be searched and the prologue of each
intervening function to be executed backwards interpretively.

You should always avoid the execution of a termination handler as a
result of the abnormal termination of a try body by a return, or other
direct flow of control out of the try body. Abnormal termination
occurs whenever control leaves the try body other than by falling
through the bottom. This can occur because of a return, goto,
continue, or break. It can also occur because of an exception, which
presumably cannot be avoided.

In the above example, abnormal termination in the nonexception case
can be eliminated easily as follows:

/* Correct use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 } else {
 .
 .
 }
 } finally {
 .
 .
 }
 return;

}

Now both clauses of the if fall through to the termination handler in
all but exceptional cases and execute the termination handler in the
most efficient way. This also has the same logical execution as the
previous sample.

In summary, the correct use of try/finally is a powerful method to
help you write robust applications. Care should be taken to ensure the
correct use of try/finally.

SAMPLE: Simple DLL Demonstration
Article ID: Q83932

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SIMPLDLL sample provides a generic DLL template. Also
included are two small test applications, LINKTEST and
LOADTEST, which demonstrate load-time linking (to a DLL
import library) and dynamic loading, respectively.

More Information:

THE_DLL contains a skeleton DLL (dynamic-linked library)
entry point and five exported functions with varying
parameter lists. A resource file (containing a dialog box
template) is also used.

LINKTEST is a small application that links with the
THE_DLL's import library, and allows the user to make calls
into THE_DLL (via menu item selections).

LOADTEST is a small application that loads THE_DLL at run
time and calls the GetProcAddress function to retrieve the
addresses of THE_DLL's exported functions. Again, the user
is allowed to make calls into THE_DLL.

Additional reference words: GetModuleFileName, LoadLibrary,
GetProcAddress

Sample: Virtual Memory API Function Demonstration
Article ID: Q85919

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

VIRTMEM is a sample of the various virtual memory API functions
available under Win32.

When you start the application, you are initially given a RESERVED
page of virtual memory. You can change the protection and state of the
page through menu selections. Check marks will appear in the menu
items to indicate the current state and protection on the page. More
in-depth information regarding the page can be obtained by selecting
the Show Page menu item.

The Lock menu item allows you to lock and unlock the page in memory.

The application also uses structured exception handling and allows you
to try and write to the page in its various states and protections. To
do this, select the Test menu option.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

INF: NT Consoles Do Not Support ANSI Escape Sequences
Article ID: Q84240

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Windows NT currently does not support ANSI escape sequences. This
should affect very few uses (for example, changing the color of the
prompt) and a very limited number TTY-type programs that rely on the
console for escape support to be provided.

This feature is is under review and is being considered for future
releases.

INF: Setting the Console Configuration
Article ID: Q105674

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

To create a command prompt with custom features such as

 Settings
 Fonts
 Screen Size and Position
 Screen Colors

create a new entry in the Program Manager for CMD.EXE (suppose that
the description is CUSTOM), choose these items from the CMD system
menu, and select Save Configuration in each dialog box. The settings
are saved in the registry under

 HKEY_CURRENT_USER\
 Console\
 custom

and are used when starting the CUSTOM command prompt from the Program
Manager or when specifying:

 start "custom"

This behavior is really a convenient side effect of

 start <string>

which sets the title in the window title bar. When you create a new
console window with the START command, the system looks in the
registry and tries to match the title with one of the configurations
stored there. If it cannot find it, it defaults to the values stored
in:

 HKEY_CURRENT_USER\
 Console\
 Configuration

This functionality can be duplicated in your own applications using
the registry application programming interface (API).

For more information, please see the "Registry and Initialization
Files" overview and the REGISTRY sample.

Additional reference words: 3.10

Sample: CreateProcess() Priority Demonstration
Article ID: Q84539

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample STARTP demonstrates how to start a new process at a
given default priority. It is a functional replacement for the
"start" command, but with added features.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

STARTP starts a separate window to run a specified program. The
following is the command syntax for STARTP.

STARTP [/Ttitle] [/Dpath] [/h] [/l] [/min] [/max]
 [/c] [program] [parameters]

 title Title to display in window title bar. Put entire
 parameter in quotation marks to include spaces in the
 title; for example, startp "/Ttest job".
 path Starting directory.
 h Set default to high priority.
 l Set default to low priority.
 min Start window minimized.
 max Start window maximized.
 c Use current console instead of creating a new console.
 program A program to run as either a GUI application or a console
 application.
 parameters These are the parameters passed to the program.

Note that the priority parameters may have no effect if the program
changes its own priority.

Sample: Demonstration of Setting Console Text Color
Article ID: Q87329

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The CONSOLEC sample illustrates the use of the SetConsoleTextAttribute()
and GetConsoleScreenBufferInfo() functions to set the console text color
attributes.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

This sample also functions as a utility to set the text color of the
console window. The command syntax for the utility is as follows:

 COLOR FOREGROUND [BACKGROUND]

FOREGROUND and BACKGROUND are the new text color selections for the
current console. If the utility is invoked without any options, the
utilities syntax and a table of the possible color choices is
displayed. The BACKGROUND selection is optional, and thus just the
FOREGROUND text color can be changed.

Possible colors are: black, blue, green, cyan, red, magenta, yellow
and white. Each of these can be selected as the FOREGROUND or the
BACKGROUND color. Selection of the same color for both the FOREGROUND
and the BACKGROUND is not permitted. The color options are not case
sensitive, and only the first unique characters are necessary to
select the color. For example

 COLOR BLU W

will select blue on white text color attributes.

The text color attribute changes only affect new console output. Thus,
text in the console buffer before the utility is invoked retains its
original color attributes.

Additional reference words:

Sample: Asynchronous I/O Demonstration
Article ID: Q87330

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The EVENT sample demonstrates performing asynchronous I/O in Win32. In
Win32 you can do this in two ways. One way is similar to OS/2 where a
thread is spawned that performs the I/O and returns. With Win32, when
you create a file, it signals to the system that you want to perform
I/O asynchronously. Then, when ReadFile(), for example, is going to take
a significant amount of time to complete, an ERROR_IO_PENDING error is
generated, signaling you to do other tasks until you NEED the data,
at which time you can use the GetOverlappedResults() function, which
will finish the I/O.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

Note that this activity has taken place without the need of an
additional thread to perform the work. This sample touches only on the
capabilities of what one can do with the new overlapped I/O functions.
For example, an application that uses pipes to communicate over the
network to other clients can create these file handles with the
overlapped flag. Then, instead of blocking and waiting for a
connection, the server application can go about doing useful tasks
waiting for the pipe to enter the "signaled" state. In addition, you
can perform more than one operation on this handle at one time, such
as reading and writing to the same file.

All this power does not come without some responsibilities on the
programmer's side. First, the system does not keep track of the system
file pointers. In addition, you cannot use the data until the system
responds by setting an event to a signaled state.

In the first case this just means you need to keep track of the value
"lpNumberOfBytesTransfered" returned by GetOverlappedResult() and update
the OVERLAPPED structure with this information. This OVERLAPPED
structure will then be passed into the Read/WriteFile() function, which
will use this as the offset to the starting point for the I/O
operation. The first call to Read/WriteFile() will normally then have
the offset fields in the OVERLAPPED structure set to zero.

The second case should be used as a criteria of whether to use this
type of I/O. If you need the data before you can do anything else, use

normal synchronous I/O and let the system handle the details for you.
This also demonstrates an important reason for using an EVENT to wait
on rather than the file handle. While both are allowed in a
multithread application, one cannot guarantee that the thread that set
the handle to the signaled state will be the one returning from the
GetOverlappedResult() because each thread is using the same handle to
wait on.

To keep this sample focused, the user interface is simple. To run
this sample at the command prompt, type:

 ASYNC_IO <In_file> <Out_file>

In_file and Out_file are place holders. As this is implemented, you
cannot write over an existing file. While this is up and running, you
will see vital statistics such as, such as the following:

 - When I/O is pending
 - How many bytes are transferred
 - End of file

Sample: Demonstration of the Console API Functions
Article ID: Q87332

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The CONSOLE sample demonstrates the Win32 console API functions. The
program takes no parameters; to start, just run CONSOLE.EXE. After
starting the sample, you can click on one of the functions on the
screen to get a demonstration of that function. When viewing a demo
of the function, the title of the console window is changed to show
the name of the source file where that demo function resides. This
should make it easy to find the sample code where the function of
interest resides.

Please note that some of the demos cover multiple APIs, so some of
the menu choices run the same demo.

INF: Replacing the Shell (Program Manager)
Article ID: Q100328

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

To replace the current shell, change the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 MICROSOFT\
 Windows NT\
 Current Version\
 Winlogon\
 Shell

Note that Program Manager combines the functionality of Program
Manager and Task Manager (the Task Manager installed is not actually
run). Therefore, if the new shell does not replace the Task Manager
functionality, the replacement string should contain both the new
shell name and TASKMAN.EXE, separated by commas.

To update the string that is retrieved when calling
GetPrivateProfileString(), change the string in the following registry
key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 MICROSOFT\
 Windows NT\
 Current Version\
 WOW\
 Boot\
 Shell

The duplicate entry is for compatibility with Windows 3.1.

More Information:

WritePrivateProfileString() changes the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 MICROSOFT\
 Windows NT\
 Current Version\
 WOW\
 Boot\
 Shell

It does not have the desired effect of actually changing the Shell.

Additional reference words: 3.10

INF: Four New Win32 Memory-Handling APIs
Article ID: Q94146

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

We have added four new Win32 APIs and changed the definitions of a few NT
rtl APIs. The changes were designed so that all of our code could move,
copy, fill, and zero memory using the fastest mechanism on each platform.

Note: From now on, please use the following APIs:

 NT Code Win 32 Applications

Copy Memory - RtlCopyMemory() CopyMemory()
Moving Memory - RtlMoveMemory() MoveMemory()
Zeroing Memory - RtlZeroMemory() ZeroMemory()
Filling Memory - RtlFillMemory() FillMemory()

The difference between RtlCopyMemory() and RtlMoveMemory() is that
RtlCopyMemory() does not handle overlapped copies; it is equivalent to
memcpy(). RtlMoveMemory() handles overlapped copies (similar to
memmove()).

If you look closely at the changes made to support the memory movers, you
will see that on the x86 platform, the movers are defined to be identical
to the C run-time intrinsic movers. The x86 compilers will inline these
calls for us. On MIPS, these calls are vectored (through forwarders in
KERNEL32.DLL) to code in NTDLL.DLL.

INF: Secure Erasure Under Windows NT
Article ID: Q94239

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

File systems under Windows NT currently have virtual secure erasure (when a
file is deleted, the data is no longer accessible through the operating
system). Although the bits could still be on disk, NT will not allow access
to them.

NTFS does this by keeping a high-water mark, for each file, of bytes
written to the file. Everything below the line is real data, anything above
the line is (on disk) random garbage that used to be free space, but any
attempt to read past this high-water mark returns all zeros.

Other reusable objects are also protected. For example, all the memory
pages in a process's address space are zeroed (unlike the file system, a
process may directly access its pages, and thus the pages must be actually
zeroed rather than virtually zeroed).

Note that file system security assumes physical security; in other words,
if a person has physical access to a machine and can boot an alternative
operating system and/or add custom device drivers and programs, he/she can
always get direct access to the bits on disk.

Additional reference words: 3.10 3.1

INF: First and Second Chance Exception Handling
Article ID: Q105675
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Structured exception handling (SEH) takes a little getting used to,
particularly when debugging. It is common practice to use SEH as a
signaling mechanism. Some application programming interfaces (APIs)
register an exception handler in anticipation of a failure condition
that is expected to occur in a lower layer. When the exception occurs,
the handler may correct or ignore the condition rather than allowing a
failure to propagate up through intervening layers. This is very handy
in complex environments such as networks where partial failures are
expected and it is not desirable to fail an entire operation simply
because one of several optional parts failed. In this case, the
exception can be handled so that the application is not aware that an
exception has occurred.

However, if the application is being debugged, it is important to
realize that the debugger will see all exceptions before the program
does. This is the distinction between the first and second chance
exception. The debugger gets the "first chance," hence the name. If
the debugger continues the exception unhandled, the program will see
the exception as usual. If the program does not handle the exception,
the debugger will see it again (the "second chance"). In this latter
case, the program normally would have crashed had the debugger not
been present.

If you do not want to see the first chance exception in the debugger,
then disable the feature. Otherwise, during execution, when the
debugger gets the first chance, continue the exception unhandled and
allow the program to handle the exception as usual. Check the
documentation for the debugger that you are using for descriptions of
the commands to be used.

Additional reference words: 3.10

INF: Thread Local Storage Overview
Article ID: Q94804
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Thread local storage (TLS) is a method by which each thread in a given
process is given a location(s) in which to store thread-specific data.

Four functions exist for TLS: TlsAlloc(), TlsGetValue(),
TlsSetValue(), and TlsFree(). These functions manipulate TLS indexes,
which refer to storage areas for each thread in a process. A given
index is valid only within the process that allocated it.

A call to TlsAlloc() returns a global TLS index. This one TLS index is
valid for every thread within the process that allocated it, and
should therefore be saved in a global or static variable.

Thread local storage works as follows: When TlsAlloc() is called,
every thread within the process has its own private DWORD-sized space
reserved for it (in its stack space, but this is
implementation-specific). However, only one TLS index is returned.
This single TLS index may be used by each and every thread in the
process to refer to its unique space that TlsAlloc() reserved for it.

For this reason, TlsAlloc() is often called only once. This is
convenient for DLLs, which can distinguish between DLL_PROCESS_ATTACH
(where the first process's thread is connecting to the DLL) and
DLL_THREAD_ATTACH (subsequent threads of that process are attaching).
For instance, the first thread calls TlsAlloc() and stores the TLS
index in a global or static variable, and every other thread that
attaches to the DLL refers to the global variable to access their
local storage space.

Although one TLS index is usually sufficient, a process may have up to
TLS_MINIMUM_AVAILABLE indexes (guaranteed to be greater than or equal
to 64).

Once a TLS index has been allocated (and stored), the threads within
the process may use it to set and retrieve values in their storage
spaces. A thread may store any DWORD-sized value in its local storage
(for example, a DWORD value, a pointer to some dynamically allocated
memory, and so forth). The TlsSetValue() and TlsGetValue() functions
are used for this purpose.

Note that the TlsSetValue() and TlsGetValue() functions are optimized
for speed, and therefore do minimal parameter checking. Therefore, it
is up to the programmer to ensure that the index passed to these
functions is valid.

A process should free TLS indexes with TlsFree() when it has finished
using them. However, if any threads in the process have stored a
pointer to dynamically allocated memory within their local storage
spaces, it is important to free the memory or retrieve the pointer to
it before freeing the TLS index, or it will be lost.

Using thread local storage may be a little more convenient than other
solutions, and will be more profitable in the future. In later
releases of NT, the compiler will include a keyword and compiler
switches to make thread local storage operations more automatic,
rather than through an application programming interface (API) layer.

For more information, see the Win32 Software Development Kit (SDK)
"Programming Techniques" help file under the TLS API.

Example

Thread A within a process calls TlsAlloc(), and stores the index returned
in the global variable TlsIndex:

 TlsIndex = TlsAlloc();

Thread A then allocates 100 bytes of dynamic memory, and stores it in its
local storage:

 TlsSetValue(TlsIndex, malloc(100));

Thread A creates thread B, which stores a handle to a window in its local
storage space referred to by TlsIndex.

 TlsSetValue(TlsIndex, (LPVOID)hSomeWindow);

Note that TlsIndex refers to a different location when thread B uses
it, than when thread A uses it. Each thread has its own location
referred to by the same value in TlsIndex.

Thread B may terminate safely because it does not need to specifically
free the value in its local storage.

Before thread A terminates, however, it must first free the
dynamically allocated memory in its local storage

 free(TlsGetValue(TlsIndex));

and then free the TLS index:

 if (!TlsFree(TlsIndex))
 // TlsFree() failed. Handle error.

Additional reference words: 3.10

INF: CPU Quota Limits Not Enforced
Article ID: Q100329

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

On page 88 of "Inside Windows NT," Table 4-1 indicates that a process
object contains a quota limit for the maximum amount of processor time
that the process can use.

This limit is not enforced in Windows NT version 3.1.

Additional reference words: 3.10

INF: Using GMEM_DDESHARE in Win32 Programming
Article ID: Q99114
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GMEM_DDESHARE flag remains a legitimate value for GlobalAlloc().
This flag can be used to indicate that the memory will be used for one
of the following so that the system can optimize the allocation for
these special needs:

 DDE
 OLE 1.0
 Clipboard operations

However, GlobalAlloc(GMEM_DDESHARE, ...) cannot be used to allocate a
block of memory that can be shared between processes. This flag was
never intended for this purpose, even under Windows versions 3.0 and
3.1 (3.x). GlobalAlloc(GMEM_DDESHARE, ...) works in this case because
all Windows 3.x applications share the same address space; this is not
the case under Windows NT.

All allocations of global shared memory can be used within the process
that they are allocated in, but another mechanism is required to share
memory between processes.

Additional reference words: 3.00 3.10

INF: Direct Drive Access Under Win32
Article ID: Q100027

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

To open a physical hard drive for direct disk access (raw I/O), a
Win32 device name of the form

 \\.\PhysicalDriveN

is available to Win32 applications, where N is 0, 1, 2, and so forth,
representing each of the physical drives in the system.

To open a logical drive, direct access is of the form

 \\.\X:

where X: is a hard-drive partition letter, floppy disk drive, or
CD-ROM drive.

MORE INFORMATION
================

You can open a physical or logical drive using the CreateFile()
application programming interface (API) with these device names
provided that you have the appropriate access rights to the drive
(that is, you must be an administrator). You must use both the
CreateFile() FILE_SHARE_READ and FILE_SHARE_WRITE flags to gain access
to the drive.

Once the logical or physical drive has been opened, you can then
perform direct I/O to the data on the entire drive. When performing
direct disk I/O, you must seek, read, and write in multiples of sector
sizes of the device and on sector boundaries. Call DeviceIoControl()
using IOCTL_DISK_GET_DRIVE_GEOMETRY to get the bytes per sector,
number of sectors, sectors per track, and so forth, so that you can
compute the size of the buffer that you will need.

Note that you cannot open a file under Win32 by using internal Windows
NT object names; for instance, attempting to open a CD-ROM drive by
opening

 \Device\CdRom0

does not work because this is not a valid Win32 device name. An
application can use the QueryDosDevice() API to get a list of all
valid Win32 device names and see the mapping between a particular

Win32 device name and an internal Windows NT object name. An
application running at a sufficient privilege level can define,
redefine, or delete Win32 device mappings by calling the
DefineDosDevice() API.

Additional reference words: 3.10

INF: Byte-Ordering in a Data Packet Under NDIS
Article ID: Q89374

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

There may be a difference in the byte order in which 16-bit words are
stored in memory versus the order in which the two bytes must be
transmitted onto the network as part of a data packet. This difference
will depend on the processor involved and which part of the data
packet the information falls under.

The information is this article is consistent with the Network Device
Interface Specification (NDIS) version 3.0.

More Information:

Consider that the data will consist of header(s), the application
data, and a trailer(s).

 | | | | |------- Trailer

 | | |____ Application data
 | |
 | |____ Header
 |
 |____ Header

When a protocol driver or an NDIS driver sends information, it does
not modify the application data, nor does it modify the ordering of
bytes in integer fields.

The ordering of bytes in integer fields within the application data is
the responsibility of the Remote Procedure Call (RPC) facility or
another mechanism. However, the driver should be concerned with how
the information in the header(s)/trailer(s) is stored. For example,
the driver may be required to put a 16-bit checksum in a header. To
put that integer value into the header in the format required by the
network specification, the driver may need to know the type of
processor that it is running on and will in any case need to follow
the network standard for storing the information in the header.

If the driver needs to find out the CPU type of the machine it is
running on, it can use NdisReadConfiguration() on the Keyword
"ProcessorType" to query this. However, as of 10/25/92 this is not
supported with the prerelease device driver kit (DDK), so the
alternative in the meantime is #ifdef i386, mips, and so on.

Additional reference words: 3.10

INF: Performing a Clear Screen (CLS) in a Console Application
Article ID: Q99261

Summary:

There is no Win32 application programming interface (API) that will
clear the screen in a console application. However, it is fairly easy
to write a function that will programmatically clear the screen. The
following function is an example:

void cls(HANDLE hConsole)
{
 COORD coordScreen = { 0, 0 }; /* here's where we'll home the
 cursor */
 BOOL bSuccess;
 DWORD cCharsWritten;
 CONSOLE_SCREEN_BUFFER_INFO csbi; /* to get buffer info */
 DWORD dwConSize; /* number of character cells in
 the current buffer */

 /* get the number of character cells in the current buffer */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "GetConsoleScreenBufferInfo");
 dwConSize = csbi.dwSize.X * csbi.dwSize.Y;

 /* fill the entire screen with blanks */

 bSuccess = FillConsoleOutputCharacter(hConsole, (TCHAR) ' ',
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputCharacter");

 /* get the current text attribute */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "ConsoleScreenBufferInfo");

 /* now set the buffer's attributes accordingly */

 bSuccess = FillConsoleOutputAttribute(hConsole, csbi.wAttributes,
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputAttribute");

 /* put the cursor at (0, 0) */

 bSuccess = SetConsoleCursorPosition(hConsole, coordScreen);
 PERR(bSuccess, "SetConsoleCursorPosition");
 return;
}

Additional reference words: 3.10 clearscreen

INF: AllocConsole() Necessary to Get Valid Handles
Article ID: Q89750

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

If a graphical user interface (GUI) application redirects a standard
handle, such as stderr or stdout, and spawns a child process, the output of
the child process will not be seen unless the AllocConsole() application
programming interface (API) function is called before the standard handle
is redirected.

More Information:

If you spawn a child process without calling AllocConsole() first, your
child console window will appear on the screen and your GUI application
will not be able to control this window (for example, it cannot minimize
the child window). In addition, users can terminate the child process by
choosing Close from the console window's Control (system) menu. This causes
users to think that only the window is closed, when in actuality, the
entire application is terminated. This can cause the user to lose data in
the console window.

Additional reference words: 3.10

INF: How to Specify Shared and Nonshared Data in a DLL
Article ID: Q89817

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

To have both shared and nonshared data in a dynamic-link library
(DLL), you need to use the new #pragma data_seg directive to set up a
new named section. You then specify the sharing attributes for this
new named data section in your .DEF file.

More Information:

Below is a sample of how to define a named data section in your DLL.
The first line directs the compiler to include all the data declared
in this section in the .MYSEC data segment. This means that the
iSharedVar variable would be considered part of the .MYSEC data
segment. By default, data will be nonshared.

Note that you must initialize all data in your named section. The
data_seg pragma only applies to initialized data.

The third line, "#pragma data_seg()", directs the compiler to reset
allocation to the default data section.

 #pragma data_seg(".MYSEC")
 int iSharedVar = 0;
 #pragma data_seg()

Below is a sample of the .DEF file that supports the shared and
nonshared segments. This definition will set the default section
.MYSEC to be shared. The default data section is by default non-shared,
so any data not in section .MYSEC will be non-shared.

 LIBRARY
 SECTIONS
 .MYSEC READ WRITE SHARED
 EXPORTS
 ...

Note: All section names must begin with a period character ('.') and
must not be longer than 8 characters, including the period character.

INF: Precautions When Passing Security Attributes
Article ID: Q94839

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

All Win32 APIs that allow security to be specified take a parameter of type
LPSECURITY_ATTRIBUTES as the means to attach the security descriptor.
However, it is a common error to pass a PSECURITY_DESCRIPTOR type to such
functions instead. Because PSECURITY_DESCRIPTOR is of type LPVOID (for
opaque data-type reasons), by C language definition, it is implicitly
converted to the correct type. Therefore, the compiler does not generate
any warnings; however, unexpected run-time errors will result.

Below is a correct example of creating a named pipe with a security
descriptor attached.

Sample Code

 saSecurityAttributes.nLength = sizeof(SECURITY_ATTRIBUTES);
 saSecurityAttributes.lpSecurityDescriptor = psdAbsoluteSD;
 saSecurityAttributes.bInheritHandle = FALSE;

 hPipe = CreateNamedPipe(TEST_PIPE_NAME,
 PIPE_ACCESS_DUPLEX,

(PIPE_TYPE_BYTE|PIPE_READMODE_BYTE|PIPE_WAIT),
 100, // maximum instances
 0, // output buffer, sized as needed
 0, // input buffer, sized as needed
 100, // timeout in milliseconds

(LPSECURITY_ATTRIBUTES)&saSecurityAttributes);
 if (INVALID_HANDLE_VALUE == hPipe)
 { // handle error
 }

Additional reference words: 3.10 3.1 lpsa psd

INF: Physical Memory Limits Number of Processes/Threads
Article ID: Q94840

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Each time Windows NT creates a process or a thread, it must allocate a
certain amount of physical memory (significantly more for processes
than threads) for its support. The specific amount of memory allocated
has not been finalized because development is working on reducing
thread/process memory requirements.

Due to the physical memory requirement of processes and threads,
programs that use the CreateProcess() and CreateThread() APIs should
be careful to check their return codes to detect out-of-memory
conditions.

Additional reference words: 3.10

INF: Security and Screen Savers
Article ID: Q96780
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Screen savers are user-mode applications that execute in a different
desktop (see the note at the end of the article). Therefore, a screen
saver cannot find any other windows (if attempting to enumerate or
find other windows). This design prevents unauthorized users from
viewing the contents of applications displayed on the screen. For
secure screen savers (those that ask for a password), this adds a
further layer of protection.

Screen savers also execute in the security context of the logged-on
user. A screen saver may call ExitWindowsEx(), to log off from or shut
down the system, or any other application programming interface (API)
that the logged-on user has permission to perform.

More Information:

A sample screen saver is distributed on the March Beta Software
Development Kit (SDK) in the \Q_A\SAMPLES\SCRNSAVE subdirectory.

Note: A desktop is a virtual screen. Windows NT currently has three
desktops--the main desktop, the WinLogon desktop, and a desktop for
screen savers. The Win32 APIs do not allow creation of multiple
desktops.

Additional reference words: 3.10

INF: Preventing the Console from Disappearing
Article ID: Q99115
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

When a console application is started from the File Manager, from the
Program Manager, or by typing "start <progname>" from the command
prompt, it executes in its own console. This console disappears as
soon as the application terminates, and therefore the user can't read
anything written to the screen between the last pause and program
exit. To resolve this problem, the programmer should pause the
application before termination to allow the user to read all of the
information on the screen.

It is not likely that the programmer will want to introduce this pause
if the application is started directly from the command prompt,
because in this situation it won't make much sense to the user.
However, there is no API (application programming interface) that
directly determines whether or not the application shares a console
with CMD.EXE. There is a method that can be used to determine this
information in most cases. When the application first starts up, call
GetConsoleScreenBufferInfo(). If the cursor position is (0, 0), then
the application has its own console, which will disappear when the
application terminates. Otherwise, the application is operating within
a console belonging to another program, typically CMD.EXE.

Note: This method will not work if the user combines a clear screen
(CLS) and execution of the application into one step ([C:\] CLS &
<progname>), because the cursor position will be (0, 0), but the
application is using the console, which belongs to CMD.EXE.

More Information:

To start a console application with its own console that will not
disappear when the application is terminated, use CMD /K. For example,
use "start CMD /K <progname>".

Note that it is possible to programmatically force an application to
always have its own console by immediately doing a FreeConsole() and
an AllocConsole(). The disadvantage is that the C run-time handles are
no longer valid. Use CreateFile("CONIN$", ...) with
lpsa->bInherit=TRUE, in combination with _open_osfhandle() and dup2()
to close the current handles (stdin, stdout, stderr) and associate
handles that will be inherited.

Additional reference words: 3.10

INF: Detecting Windows NT from a DOS Application
Article ID: Q100290

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

There are procedures that DOS applications can do that are not
supported under Windows NT. For example, calling Interrupt 25h to read
the disk is not supported under Windows NT. Therefore, in some cases
DOS applications will need to know whether or not they are running
under Windows NT.

Interrupt 21h, function 3306h can be used by DOS applications to
detect whether or not they are running under Windows NT. On return,
registers BL and BH will contain the operating system major and minor
numbers, respectively. If your application is running under Windows
NT, the return will be:

 BL = 5
 BH = 50

More Information:

Note that it is important to check both BL and BH, because MS-DOS 5.0
will also return a 5 in BL.

The following code demonstrates how to detect the operating system
version:

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <io.h>

void main()
{
 unsigned char cbh = 0;
 unsigned char cbl = 0;
 unsigned char cdl = 0;
 unsigned char cdh = 0;

 _asm {
 mov ax, 3306h
 int 21h
 mov cbh, bh
 mov cbl, bl
 }

 printf("After int 21h\n");
 printf("%d, %d (bh, bl)\n", cbh, cbl);
}

Additional reference words: 3.10

INF: Apps Should Wait to Free/Re-use WriteFileEx's Buffer
Article ID: Q90087

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The WriteFileEx function was introduced in the Win32 API. It is used to
write data to a file and report its completion asynchronously (a completion
routine is called when the write operation is complete). The following is
the function prototype, taken from the Programmer's Reference:

 BOOL WriteFileEx(hFile, lpBuffer, nNumberOfBytesToWrite,
 lpOverlapped, lpCompletionRoutine)
 HANDLE hFile; /* file to write */
 LPVOID lpBuffer; /* address of buffer */
 DWORD nNumberOfBytesToWrite; /* bytes to write */
 LPOVERLAPPED lpOverlapped; /* contains offset */
 LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine;

One point that the documentation does not stress is that the data buffer,
lpBuffer, should not be used by the application until the overlapped I/O
operation is completed. At that time, the operating system will let the
application know whether the buffer has been successfully written or
whether the data transfer failed. After the status is reported, the
application can free or re-use the buffer.

In general, we cannot assume that the operating system has its own copy of
the data in the buffer. The kernel can transfer directly from the buffer to
the device.

Additional reference words: 3.10 3.0

INF: CreateFile() Using CONOUT$ or CONIN$
Article ID: Q90088

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

If you attempt to open a console input or output handle by calling the
CreateFile() function with the special CONIN$ or CONOUT$ filenames,
this call will return INVALID_HANDLE_VALUE if you do not use the
proper sharing attributes for the fdwShareMode parameter in your
CreateFile() call. Be sure to use FILE_SHARE_READ when opening
"CONIN$" and FILE_SHARE_WRITE when opening "CONOUT$".

INF: FlushViewOfFile() on Remote Files
Article ID: Q95043

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When flushing a memory-mapped file over a network, FlushViewOfFile()
guarantees that the data has been written from the workstation, but
not that the data resides on the remote disk.

This is because the server may be caching the data on the remote end.
Therefore, FlushViewOfFile() may return before the data has been
physically written to disk.

However, if the file is created [via CreateFile()] with
FILE_FLAG_WRITE_THROUGH, the remote file system will not perform lazy
writes on the file, and FlushViewOfFile() will return when the actual
physical write is complete.

Additional reference words: 3.10 3.1

INF: No Way to Cancel Overlapped I/O
Article ID: Q90368

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

There is no support in Win32 to cancel an asynchronous request once it has
been issued. Using CloseHandle() to close the handle, or terminating the
process, does not stop the asynchronous I/O.

When a thread does an overlapped I/O (that is, a write), the system starts
up another thread to do the I/O and leaves your thread free to do other
work. Once it is started, there is no way to stop it.

If it necessary to interrupt the I/O, you can split the writes into batches
and check for interruptions. This does not prevent the read, but you could
batch the reads/writes into small pieces if you know you may want to halt
it. For example, you could break a 20 megabyte (MB) write into 20, 1 MB
pieces.

Additional reference words: 3.10 3.1

INF: Restriction on Named-Pipe Names
Article ID: Q100291
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

Named pipes are implemented in Windows NT using the same approach used
for file systems. Within Windows NT, named pipes are represented as
file objects.

During the design phase, one idea for the implementation was to allow
subdirectories of named pipes. For example, a developer could create a
named pipe subdirectory called \MYPIPES. It would then be possible to
create and use pipes called \MYPIPES\PIPE1 and \MYPIPES\PIPE2, but it
would not be possible to use \MYPIPES as a pipe.

In the end, this idea was not implemented, so subdirectories are not
supported. This does have some effect on the named-pipe names that are
allowed. If a pipe named \MYPIPES is created, it is not possible to
subsequently create a pipe named \MYPIPES\PIPE1, because \MYPIPES is
already a pipe name and cannot be used as a subdirectory. It is
possible to create a pipe named \MYPIPES\PIPE1, but only if there is
no pipe named \MYPIPES.

Additional reference words: 3.10

INF: Getting Real Handle to Thread/Process Requires Two Calls
Article ID: Q90470

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The API GetCurrentThread() returns a pseudo-handle rather than the real
handle to the thread. To get the real handle to the thread, you need to use
DuplicateHandle() using the pseudo-handle that is returned from
GetCurrentThread(). In addition, to get the real handle to a process, you
need to call DuplicateHandle() after calling GetCurrentProcess().

Additional reference words: 3.10 3.1

INF: Exporting Data from a DLL
Article ID: Q90530

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

It is possible for a Win32 executable to be able to address DLL global
variables directly by name from within the executable. This is done by
exporting global data names similar to how you would a DLL function
name. Use the following steps to delcare and utilize exported global
data.

1. Define the global variables in the DLL code. For example:

 int i = 1;
 int *j = 2;
 char *sz = "WBGLMCMTP";

2. Export the variables in the module-definition (DEF) file. Use of the
 CONSTANT keyword is required, as shown below:

 EXPORTS
 i CONSTANT
 j CONSTANT
 sz CONSTANT

3. Declare the variables in the modules that will use them (note that they
 must be declared as pointers because a pointer to the variable is
 exported, not the variable itself):

 extern int *i;
 extern int **j;
 extern char **sz;

4. Use the values by dereferencing the pointers declared in step 3:

 printf("%d", *i);
 printf("%d", **j);
 printf("%s", *sz);

 It may simplify things to use #defines instead; then the variables can
 be used exactly as defined in the DLL:

 #define i *i
 #define j *j
 #define sz *sz

 extern int i;
 extern int *j;

 extern char *sz;

 printf("%d", i);
 printf("%d", *j);
 printf("%s", sz);

More Information:

Note: This technique can also be used to export a global variable from
an application so that it can be used in a DLL.

For more information on the use of EXPORTS and CONSTANTS in the
.DEF file, see Chapter 4 of the "Tools" manual.

Additional reference words: 3.10 3.1

INF: Time Stamps Under the FAT File System
Article ID: Q101186

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

Under the FAT (file allocation table) file system, Windows NT
considers the time stamp on a file to be standard time if the current
time is standard time, and daylight time if the current time is
daylight time, regardless of what time of year the file was originally
time stamped.

This is not an issue under NTFS, which consistently implements
Universal Coordinated Time.

Additional reference words: 3.10

INF: Dynamic Loading of DLLs Under Windows NT
Article ID: Q90745

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When using LoadLibrary() under Win16 or OS/2, the DLL is loaded only once.
Therefore, the DLL has the same address in all processes. Dynamic loading
of DLLs is different under Windows NT.

A DLL is loaded separately for each process because each application has
its own address space, unlike Win16 and OS/2. Pages must be mapped into the
address space of a process. Therefore, it is possible that the DLL is
loaded at different addresses in different processes. The memory manager
optimizes the loading of DLLs so that if two processes share the same pages
from the same image, they will share the same physical memory.

Each DLL has a preferred base address, specified at link time. If the
address space from the base address to the base address plus image size is
unavailable, then the DLL is loaded elsewhere and fixups will be applied.
There is no way to specify a load address at load time.

To summarize, at load time the system:

1. Examines the image and determines its preferred base address and
 required size.

2. Finds the address space required and maps the image, copy-on-write,
 from the file.

3. Applies internal fixups if the image isn't at its preferred base.

4. Fixes up all dynamic link imports by placing the correct address for
 each imported function in the appropriate entry of the Import Address
 Table. This table is contiguous with 32-bit addresses, so 1024 imports
 require dirtying only one page.

More Information:

The pages containing code are shared, using a copy-on-write scheme. Copy-on-
write means that the pages are read-only; however, when a process writes
the page, instead of an access violation, the memory manager makes a
private copy of the page and allows the write to proceed. For example, if
two processes start from the same .EXE, both initially have all pages
mapped from the .EXE copy-on-write. As the two processes proceed to modify
pages, they get their own copies of the modified pages. The memory manager
is free to optimize unmodified pages and actually map the same physical
memory into the address space of both processes. Modified pages are swapped
to/from the page file instead of the .EXE file.

There are two kinds of fixups. One is the address of an imported function.
All these fixups are localized in what the Portable Executable
specification calls the Import Address Table (IAT). This is an array of 32-
bit function pointers, one for each imported API. The IAT is located on its
own page(s), because it is always modified. Calling an imported function is
actually an indirect call through the appropriate entry in this array. In
case that the image is loaded at the preferred address, the only fixups
needed are for imports.

Note that there is an optimization whereby each import library exports a 32-
bit number for each API along with any name and ordinal. This serves as a
"hint" to speed the fixups performed at load time. If the hints in the
program and the DLL do not match, the loader uses a binary search by name.

The other kind of fixup is needed for references to the image's own code or
data when the image can't be loaded at its preferred address. When a page
must be taken out of memory, the system checks to see whether the page has
been modified. If it has not, then the page is still mapped copy-on-write
against the EXE and can be discarded from memory. Otherwise, it must be
written to the page file before it can be removed from memory, so that the
page file is used as the backing store (where the page is recovered from)
rather than the executable image file.

Notes:

The DLL's entry point does not get called for a second LoadLibrary() call
in a process (that is, no second DLL_PROCESS_ATTACH entry). There is one
call to DllEntry/DLL_THREAD_ATTACH per thread no matter the number of times
a thread calls LoadLibrary. The same goes for FreeLibrary(), but the
DLL_THREAD_DETACH happens only on the last call (that is, reference count
back to zero for the thread).

Global instance data for the DLL is on a per process basis (only one set
per unique process). If it is necessary to ensure that global instance data
is unique for each LoadLibrary() performed in a single process, consider
thread local storage (TLS) as an alternative. This requires multiple
threads of execution, but TLS allows unique data for each ThreadID. There
is very little overhead on the DLL's part; just create a global TLS index
during process initialization. During thread initialization, allocate
memory (via HeapAlloc, GlobalAlloc, LocalAlloc, the CRT, and so on) and
store a pointer to the memory using the global TLS index value in the
function TlsSetValue. Win32 internally stores each thread's pointer by TLS
index and ThreadID to achieve the thread specific storage.

Additional reference words: 3.10 3.0

INF: Implementing a
Article ID: Q90749

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following sample demonstrates how to implement a "kill" operation, such
as a UNIX ps/kill, under Win32. Note that PSTAT.EXE gives you the PID you
need.

This sample makes useof the API TerminateProcess(). While TerminateProcess()
does clean up the objects ownedby the process it does not notify any DLLs
hooked to the process. Therefore, one can easily leave the DLL in an unstable
state.

In general, the Control Panel is a much cleaner method of killing processes.

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <windows.h>
#include <string.h>
#include <math.h>
#include <winbase.h>

void ErrorOut(char errstring[30])
/*
Purpose: Print out an meaningful error code by means of
 GetLastError and printf.

Inputs: errstring - the action that failed, passed by the
 calling proc.

Returns: none

Calls: GetLastError
*/

{
 DWORD Error;

 Error= GetLastError();
 printf("Error on %s = %d\n", errstring, Error);
}

void main(int argc, char *argv[])
{
 HANDLE hProcess;
 DWORD ProcId;
 BOOL TermSucc;

 if (argc == 2)
 {
 sscanf(agrv[1],"%x",ProcId);
 hProcess= OpenProcess(PROCESS_ALL_ACCESS, TRUE, ProcId);
 if (hProcess == NULL)
 ErrorOut("OpenProcess");
 TermSucc= TerminateProcess(hProcess, 0);
 if (TermSucc == FALSE)
 ErrorOut("TerminateProcess");
 else
 printf("Process# %.0lf terminated successfully!\n", ProcId);
 }
 else
 {
 printf("\nKills an active Process\n");
 printf("Usage: killproc ProcessID\n");
 }

}

Additional reference words: 3.10 3.1

PRB: try/finally with Abort() in try Body
Article ID: Q91146

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 When using the try/finally exception handling mechanism and the try body
 calls abort(), the finally body is not executed.

CAUSE
 The finally body is not executed because the abort() never returns. It
 calls ExitProcess(), which terminates the process.

RESOLUTION
 This behavior is by design.

Additional reference words: 3.10 3.1

INF: LIM-EMS Memory Limitations in a Windows NT VDM
Article ID: Q101189

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

A Windows NT virtual MS-DOS machine (VDM) session is LIM-EMS 4.0
compatible; however, each VDM is limited to 16 megabytes (MB) of
memory.

A VDM is an MS-DOS session created whenever a user starts an MS-DOS
application on Windows NT. Windows NT allows any number of MS-DOS
applications to run simultaneously, each in its own address space.

Additional reference words: 3.10

INF: Examining the dwOemId Value
Article ID: Q101190

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The Win32 application programming interface (API) GetSystemInfo()
fills in the members of a SYSTEM_INFO structure. The dwOemId member
represents a computer identifier that is specific to a particular OEM
(original equipment manufacturer). The first version of Windows NT
always places a zero in the dwOemId member. In a later release, this
behavior will change to include different OEM IDs.

Additional reference words: 3.10

INF: Win32 Priority Class Mechanism and the START Command
Article ID: Q90910

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Win32 priority class mechanism is exposed through CMD.EXE's START
command.

START now accepts the following switches:

 /LOW - Start the command in the idle priority class.

 /NORMAL - Start the command in the normal priority class
 (this is the default).

 /HIGH - Start the command in the high priority class.

 /REALTIME - Start the command in the real-time priority class.

For a complete list of STARTs switches, type the following command at
the Windows NT command prompt:

 start /?

Win32 has also been modified to inherit priority class if the parent's
priority class is idle; thus, a command such as

 start /LOW nmake

causes build and all descendants (compiles, links, and so on) to run in the
idle priority class. Use this method to do a real background build that
will not interfere with anything else on your system.

A command such as

 start /HIGH nmake

runs BUILD.EXE in the high priority class, but all descendants run in the
normal priority class.

More Information:

Be very careful with START /HIGH and START /REALTIME. If you use either of
these switches to start applications that require a lot of cycles, the
applications will get all the cycles they ask for, which may cause the
system to appear hung.

Additional reference words: 3.10 3.0

INF: Creating Windows in Threads
Article ID: Q90975

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In a multithreaded application, any thread can call the CreateWindow() API
to create a window. There are no restrictions on which thread(s) can create
windows.

It is important to note that the message loop and window procedure for the
window must be in the thread that created the window. If a different thread
creates the window, the window won't get messages from DispatchMessage(),
but will get messages from other sources. Therefore, the window will appear
but won't show activation or repaint, cannot be moved, won't receive mouse
messages, and so on.

To allow threads to share input state so that they can call SetFocus() for
a window in a different thread, it is necessary to call
AttachThreadInput().

Additional reference words: 3.10 3.1

INF: SHARE.EXE Functionality Built into Windows NT
Article ID: Q101191

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The functionality of the MS-DOS SHARE.EXE utility is built into the
Windows NT kernel. Any application or application programming
interface (API) that relies on the SHARE.EXE functionality is
automatically supported. This functionality cannot be disabled.

More Information:

If you run the MS-DOS version of SHARE.EXE, you will receive a message
stating that SHARE is already installed. The Windows NT MS-DOS
emulation hooks Interrupt 2Fh function 10H and always returns a status
indicating that SHARE is installed.

If you run an MS-DOS application and it complains that SHARE.EXE is
not installed, the application may be searching the AUTOEXEC.BAT file
for a "share" string rather than using the proper Interrupt 2Fh
interface.

Additional reference words: 3.10

PRB: try/finally with return in finally Body Preempts Unwind
Article ID: Q91147

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 Returning out of a finally returns from the containing procedure scope.
 For instance, in the following code fragment, the return in the finally
 block results in a return from func():

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __finally {
 if (status != 0) {
 status = FAILURE;
 return status;
 }
 }
 return status;
 }

CAUSE
 A return from within a __finally is equivalent to a goto to the closing
 brace in the enclosing function [for example, func()]. This is allowed,
 but has consequences that should normally be avoided.

 Exception handling has two stages. First, the exception stack is walked,
 looking for an accepting __except. When an accepting handler has been
 found, all __finallys between the top-of-exception-stack and the target
 __except will be called. During this "unwind", the __finallys are
 assumed to each execute and then return to their caller (the system
 unwind code).

 A return in a __finally abnormally aborts this unwinding. Instead of
 returning to the system unwinder, the __finally returns to the enclosing
 function's caller [for example, func()'s parent]. The accepting __except
 filter may set some status or perform an allocation in anticipation of
 the __except handler being entered. In this case, the intervening
 __finally with the return will stop the unwind, and the __except handler
 is never entered.

RESOLUTION

 This is by design. It makes it possible for a finally handler to stop an
 unwind and return a status. This is what is referred to as a collided
 unwind.

 Abnormal termination from try/except or try/finally blocks is not
 generally recommended because it is a performance hit.

 The example can be rewritten so that the unwind chain is not aborted:

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __except(status != 0) {

 /* null */
 }
 if (status != 0)
 status = FAILURE;
 return status;
 }

 This does not have identical semantics because the exception filters
 higher up the exception stack will not be executed. However, ensuring
 that both phases of exception handling progress to the same depth is a
 more robust solution.

More Information:

Normally this behavior is transparent to any higher-level exception
handling code. If, however, a filter function, as a side effect, stores
information that it expects to process in an exception handler, then it may
or may not be transparent. Storing such information in a filter function
should be avoided because it is always possible that the exception handler
will not be executed because the unwind is preempted. In the absence of
storing such side effects, it will be transparent that an exception
occurred and an attempted unwind occurred if one of the descendent
functions has a try/finally block with an finally clause that preempts the
unwind.

Additional reference words: 3.10 3.1

INF: Initiating an Unwind in an Exception Handler
Article ID: Q91148

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In the "Programmer's Reference: Overviews," in the chapter titled
"Structured Exception Handling," the last paragraph of the Exception
Handling and Unwind subsection says that "the exception handler usually
initiates an unwind operation by calling a system supplied function".

The paragraph describes what the compiler-generated code for try-except
does. Initiating the unwind is automatically handled by the compiler when
you exit the handler in any way other than by sequentially executing the
final statement, for example, with a goto, return, break, and so forth. See
the example below.

Because exception handling can be quite different under different processor
architectures, the description uses words such as "usually"; "usually" you
initiate an unwind. In some cases (for example, a goto to a label in the
current call frame), you don't need to unwind (you already did when you hit
the handler), so none is needed, and the compiler need not bother calling
the system to do one.

Note that unwinds aren't a fast operation. It would generally be better for
the exception filter to decide the exception can't be handled, and evaluate
to EXCEPTION_CONTINUE_SEARCH, than to force the unwind this way. If some
cleanup still needs doing, the termination handler will be called during
the unwind operation and could do the cleanup.

More Information:

The following code fragment demonstrates initiating an unwind by exiting
the exception handler with a goto statement:

 int func() {

 try {

 ThisCode(BuggyParameter);

 }

 except(EXCEPTION_EXECUTE_HANDLER) {

 if(ICannotContinue(BuggyParameter))
 goto InitUnwind; // <- This initiates the desired unwind

 HandleProblemBrilliantly(BuggyParameter);

 }

 InitUnwind:

 ProcessData();
 IssueError();
 RetireGracefully();
 }

Additional reference words: 3.10 3.1

INF: Using volatile to Prevent Optimization of try/finally
Article ID: Q91149

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following is an example of a valid optimization that may take
programmers by surprise.

1. A variable (temp) used only within the try-except body is declared
 outside it, and therefore is global with respect to the try.

2. Assignment to the variable (temp) is in the program only for a possible
 side effect of doing a read memory access through the pointer.

For example:

 VOID
 puRoutine(PULONG pu)
 {
 ...
 ULONG temp; // Just for probing
 ...
 try {
 temp = *pu; // See if pu is a valid argument
 }

 except {
 // Handle exception
 }
 }

The compiler optimizes and eliminates the entire try-except statement
because temp is not used later.

If the value of temp were used globally, the compiler should treat the
assignment to temp as volatile and do the assignment immediately even if it
is overwritten later in the body of the try. The reasoning is that, at
almost any point in the try body, control may jump to the except (or an
exception filter). Presumably the programmer accessing the variable outside
the try wants to get the current (most recently assigned) value.

The way to prevent the compiler from performing the optimization is:

 temp = (volatile ULONG) *pu;

If a temporary variable is not needed, given the example, the read access
should still be specified as volatile, for example:

 *(volatile PULONG) pu;

Additional reference words: 3.10

INF: Icons for Console Applications
Article ID: Q91150

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under OS/2, when adding an application named CONAPP.EXE to a program group,
the system uses the file CONAPP.ICO (if it exists) as the icon. This does
not happen automatically under Windows NT; the item will have a generic
icon.

To specify the icon that appears in the program group, use the following
steps:

1. Create a resource file containing an ICON statement:

 ConApp ICON ConApp.ICO

2. Compile the resource using RC:

 rc -r -fo conapp.res $(cvars) conapp.rc

3. Use CvtRes to produce an .RBJ file:

 cvtres -$(CPU) conapp.res -o conapp.rbj

4. Include the .RBJ file in the link command.

Steps 2-4 are intended for use in a makefile that does an !include of
NTWIN32.MAK. See the makefiles for the SDK samples for more detail.

More Information:

If the application is started by clicking its icon in Program Manager, the
icon that appears when the application is minimized will be that icon,
whether it is a generic icon or an icon imbedded in the executable file.

If the application is started from the MS-DOS prompt or the File menu, then
the icon that appears when the application is minimized will be the icon
that is used for the MS-DOS prompt.

Additional reference words: 3.10 3.1

PRB: Maximum Memory Handles
Article ID: Q91194

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following limitations exist when allocating memory handles. The
minimum block you can allocate with each call to VirtualAlloc() is
64K. There is a per-process limit on the number of handles you can
allocate. If you allocate 32K handles, you run out of the 2GB user
address space. When calling HeapAlloc(), there is no limit to the
number of handles. Microsoft has successfully allocated over 1,000,000
handles on a growable heap using HeapAlloc(). GlobalAlloc() and
LocalAlloc() (combined) are limited to 65536 total handles for
GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. Note that this
limitation does not apply to GMEM_FIXED or LMEM_FIXED memory.

Additional reference words: 3.10 3.1

INF: PAGE_READONLY May Be Used as Discardable Memory
Article ID: Q94947
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Virtual memory pages marked as PAGE_READONLY under Win32 may be used
the way discardable segments of memory are used in Windows 3.1. These
virtual memory pages are by default not "dirty," so the system may use
them (zeroing them first if necessary) without having to first write
their contents to disk.

From a system resource perspective, PAGE_READONLY is treated similar
to discardable memory under Windows 3.1 when the system needs to free
up resources. From a programming standpoint, the system automatically
re-reads the memory when the data is next accessed (for example, we
attempt to access our page when it has been "discarded," a page fault
is generated, and the system reads it back in). Memory-mapped files
are convenient for setting up this type of behavior.

If a PAGE_READONLY memory page becomes dirty [by changing the protection
via VirtualProtect() to PAGE_READWRITE, changing the data, and restoring
PAGE_READONLY], the page will be written to disk before the system uses it.

Additional reference words: 3.10 3.1

PRB: Return Values of Performance APIs
Article ID: Q91215

--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In the Windows Help file for the Win32 API, the APIs
QueryPerformanceCounter() and QueryPerformanceFrequency() are incorrectly
documented as returning FALSE when a high performance timer is not present
and TRUE when a high performance timer is present.

The reverse is correct; FALSE (SUCCESS) is returned when a high performance
counter is present in the system and TRUE (!SUCCESS) is returned when a
high performance counter is not present.

For x86 and R4000 systems, FALSE (SUCCESS) is always returned because high
performance counters are available on both platforms.

Additional reference words: 3.10 3.1

INF: Sharing Win32 Services
Article ID: Q91698

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 services are discussed in the overview for the Service Control
Manager. The documentation says that:

 A Win32 service runs in a Win32 process which it may or may not share
 with other Win32 services.

Whether or not a service has its own process is determined by which of
these service types is specified in the call to CreateService() to add the
service to the Service Control Manager Database.

SERVICE_WIN32_OWN_PROCESS

 This service type indicates that only one service can run in the
 process. This allows an application to spawn multiple copies of a
 service under different names, each of which gets its own process. This
 is the most common type of service.

SERVICE_WIN32_SHARE_PROCESS

 This service type indicates that more than one service can be run in a
 single process. When the second service is started, it is started as a
 thread in the existing process. A new process is not created. An example
 of this is the LAN Manage Workstation and the LAN Manager Server. Note
 that the service must be started in the system account, which is
 .\System. The name must be NULL.

The service type for each service is stored in the registry. The value is
0x10 for SERVICE_WIN32_OWN_PROCESS or 0x20 for SERVICE_WIN32_SHARE_PROCESS.

Additional reference words: 3.1 3.10

INF: Determining Whether Windows NT Is Running
Article ID: Q92395

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Programmers can use GetVersion() to determine what version of Windows
their applications are running under. This might be a version of
MS-DOS/Windows, Windows on Windows (WOW), MS-DOS/Windows using
extensions (Win32s), Windows NT, or Windows NT Advanced Server.
According to the documentation, the return value of GetVersion() is a
DWORD that specifies the major and minor version numbers.

The following table shows the return values from GetVersion() under various
environments:

| Environment | LOWORD | HIWORD |
|---
| Win 3.x | Windows version | MS-DOS version |
| WOW | Windows version 3.1 | MS-DOS version 5.0 |
| Win32s | Windows version 3.1 | RESERVED * |
| Win32 | Windows version 3.1 | RESERVED ** |

 * The highest bit is 1. Note that the version of MS-DOS cannot be
 determined as it can under Windows 3.x.
** The highest bit is 0. The remaining bits specify build number.

Note that Windows 3.1 and WOW can return the same results. Therefore,
GetVersion() is especially useful only for 32-bit applications to determine
whether they are running under Windows NT or under Windows 3.1 with Win32s.
This is done by masking off the high bit.

Therefore, 16-bit applications should use GetWinFlags() to determine
whether they are being run under MS-DOS/Windows or WOW. GetWinFlags()
returns a WF_WINNT flag if the application is running under WOW.

GetWinFlags() is an existing function that has had these the following
flag added in WOW:

 #define WF_WINNT 0x4000

GetWinFlags() is not a part of the Win32 API. Processor information can be
found through the new Win32 API GetSystemInfo().

In order to distinguish between Windows NT and Windows NT Advanced
Server, use the registry API to query the following:

 \HKEY_LOCAL_MACHINE\SYSTEM
 \CurrentControlSet

 \Control
 \ProductOptions

The result will be either WINNT or LANMANNT (for NTAS).

Additional reference words: 3.10 3.1

INF: Interrupting Threads in Critical Sections
Article ID: Q101193

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

If a thread enters a critical section and then terminates abnormally,
the critical section object will not be released. Many components of
the C run-time library are not reentrant and use a resource locking
scheme to maintain coherency in the multithreaded environment. Thus, a
thread that has entered a C run-time function, such as printf(), could
deadlock all access (within that process) to printf() if it terminates
abnormally.

This situation could arise if a thread is terminated with
TerminateThread() while it holds a resource lock. If this occurs, any
thread that tries to acquire that resource lock will become
deadlocked.

Additional reference words: 3.10

INF: New DLL: LOCALMON.DLL
Article ID: Q92507

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The new DLL, LOCALMON.DLL, resides in WINNT\SYSTEM32. This new DLL is a
monitor that manages ports at a high level.

Monitors are responsible for sending the print job to a port. If the port
is a communications port, the monitor will open the port (COM1), set the
baud rate, parity, and so on, as well as write the data and close the port.

Monitors allow users to print to a LaserJet IIISi, to PostScript printers
on an AppleTalk network, or to named pipes. Monitor management and UI can
be configured within the Print Manager by selecting the port from a combo
box.

Additional reference words: 3.10 3.1

INF: Changes to DLL Makefiles Made for Final Release
Article ID: Q101337

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The documentation and sample makefiles for beta versions of the Win32
software development kit (SDK) use a different entry point for
dynamic-link libraries (DLLs) than is recommended for the final
release. This difference is important to note if your DLLs are linked
with the C run time.

Previously, Microsoft recommended calling _crt_init() in your DLL
entry point (or making it the DLL entry point), so that the C run time
would be correctly initialized. Currently, Microsoft recommends that
all DLLs provide a main function

 BOOL WINAPI DllMain(HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

and that the entry point be specified with the following linker
option:

 -entry:_DllMainCRTStartup$(DLLENTRY)

More Information:

The loader calls DllMainCRTStartup(), which is provided in the C
run-time library. This routine handles all C run time and C++
initialization, then determines whether DllMain() is exported from the
DLL, and executes it if it exists.

Additional reference words: 3.10

INF: Impersonation Provided by ImpersonateNamedPipeClient()
Article ID: Q101378

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The following information is from the Win32 application programming
interface (API) "Programmer's Reference" in the section regarding
ImpersonateNamedPipeClient():

 BOOL ImpersonateNamedPipeClient(HANDLE hNamedPipe)

 The ImpersonateNamedPipeClient function impersonates a named-pipe
 client application.

The level of impersonation can be specified by the client when the
named pipe is opened. If the client does not explicitly specify a
level, then the default is SecurityImpersonation.

More Information:

Suppose there are three threads (A, B, and C) where:

 A calls B

 B calls C

 B does a SecurityImpersonation of A

If A and B both specify dynamic tracking, then C can see the context
of A when it makes a call on the pipe, as long as B impersonates A.
Otherwise, C will see the context of A only if B was impersonating A
when the pipe between B and C was connected.

Note that dynamic tracking is not supported between machines.

Additional reference words: 3.10

INF: Distributed Computing Environment (DCE) Compliance
Article ID: Q92515

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Remote Procedure Call (RPC) is one part of the OSF Distributed Computing
Environment (DCE) model. The following background information comes from
the introduction to RPC in the "Remote Procedure Call Programmer's Guide
and Reference":

 The design and technology behind Microsoft RPC is just one part of a
 complete environment for distributed computing defined by the Open
 Software Foundation (OSF), a consortium of companies formed to define
 the components of a complete environment that supports distributed
 computing. The OSF requests proposals for standards, accepts comments on
 the proposals, votes whether to accept the standards and promulgates
 them.

Generally speaking, Microsoft has tested interoperability with DCE
connection-oriented RPC 1.0.1. We are DCE connection-oriented RPC
compliant, not compliant with the whole DCE. For example, there is no
support for the OSF DCE Core Services (that is, Directory Service, Security
Service, Time Service, and so on) or the OSF DCE Extended Services (that
is, Distributed File Service, Diskless Support Service, Personal Computer
Integration Service, and so on).

More Information:

Microsoft RPC, which interoperates with connection-oriented DCE RPC, is
supported on MS-DOS, Windows, and Windows NT. MS-DOS and Windows support
RPC clients. Windows NT supports both RPC clients and servers.

DCE has been certified using TCP/IP and UDP/IP. Microsoft RPC under MS-DOS
supports LAN Manager version 2.1 TCP only. Under Windows, TCP is supported
from any vendor that is compliant with the Windows Sockets specification.
Under Windows NT, we support the TCP packaged in the product. In
addition to those protocols, which are of interest to people looking
at interoperability, Microsoft RPC also supports NetBIOS and Named
Pipes.

The OSF will be sponsoring inter-vendor tests early in 1993. Microsoft
intends to attend. At the current time, DEC is the only vendor shipping
DCE. Microsoft has tested interoperability with Ultrix and VMS machines.

Microsoft RPC is part of the Win32 SDK. The customer has the right to
freely distribute run times with applications if the run time is not
already distributed with the operating system.

Additional reference words: 3.10 3.1

INF: Process Will Not Terminate Unless System Is In User-mode
Article ID: Q92761

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under Windows NT, a process will not be terminated unless the system is
in user-mode. Suppose that TerminateProcess() is called while a device
driver or filesystem code is being executed. The system will wait until
the threads are running user code before marking the process for
termination. On system exit, processes that were the target of a
TerminateProcess() will be killed.

This may affect drivers. If a driver is waiting for an object or
multiple objects in WaitMode or UserMode, its wait may complete
unsuccessfully due to a termination request. Any code that does a
UserMode wait or an Alertable wait must check the return status of the
wait call. If the wait fails with STATUS_USER_APC or STATUS_ALERTED,
this is not an error. The driver should cleanup and return to user-mode.

Additional reference words: 3.10

INF: Non-Address Range in Address Space
Article ID: Q92764

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Each process has its own private address space. The process can use up
to 2 gigabytes of virtual memory. This 2Gb is not necessarily
contiguous. The system uses the other 2Gb.

The user-mode addresses extend from 0x00010000 to 0x7FFF0000. The
following ranges are reserved as non-address space to ensure that the
process does not walk on system-owned memory

 0x00000000 to 0x0000FFFF (first 64K of virtual space)

 0x7FFF0000 to 0x7FFFFFFF (last 64K of user virtual space)

These are effectively PAGE_NOACCESS ranges.

Additionally, Win32 DLLs will reserve other specific address ranges. For
more information, see the file COFFBASE.TXT that comes with the DDK.

More Information:

This range is not guaranteed to serve this purpose in the future. There
could be good reasons in a future implementation to use these addresses.
Code that is going to depend on this non-address range should verify its
validity at run time with something like

 BOOL IsFirst64kInvalid(void)
 {
 BOOL bFirst64kInvalid = FALSE;

 try {
 *(char *)0x0000FFFF;
 }
 except (EXCEPTION_EXECUTE_HANDLER) {
 if (EXCEPTION_ACCESS_VIOLATION == GetExceptionCode())
 bFirst64kInvalid = TRUE;
 }

 return bFirst64kInvalid;
 }

INF: Alternatives to Using GetProcAddress With LoadLibrary
Article ID: Q92862

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When loading a DLL with LoadLibrary(), an alternative to calling
GetProcAddress() for each of your DLL entry points is to have the DLL
initialization function initialize a global structure or array containing
the addresses of these DLL entry points, then call a DLL function from your
executable which will return the address of this structure or array to your
executable. You can then call your DLL functions via the function pointers
in this structure or array.

The best place to initialize this structure or array of function pointers
would be in the DLL_PROCESS_ATTACH code of your DLL's main entry point. The
structure or array containing these function pointers must be declared as
either a global variable or as dynamically allocated memory (malloc(),
GlobalAlloc(), etc.) in your DLL in order for the executable to be able to
address this memory properly.

It is also possible, though not as clean, to export the global structure or
array of function pointers so that your executable can use the structure or
array by name directly in your executable. For more information on how to
declare and export global data in a Win32 DLL query on the following words
in this Knowledge Base:

 global and exported and data and DLL

Be careful not to call these DLL functions via the function pointers after
the DLL is unloaded via FreeLibrary(). After FreeLibrary() is called, these
function pointer addresses are invalid and calling them will result in an
access violation.

This technique of returning pointers to DLL entry points is a supported
technique and will work on all hardware platforms that Windows NT supports.

INF: Gaining Access to ACLs
Article ID: Q102098

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

To gain access to a security access control list (SACL), a process
must have the SE_SECURITY_NAME privilege. When requesting access, the
calling process must request ACCESS_SYSTEM_SECURITY in the desired
access mask.

There is not a privilege that controls read or write access to a
discretionary access control list (DACL). Instead, access to read and
write an object's DACL is granted by the READ_CONTROL and WRITE_DAC
access rights, respectively. These rights must be specifically granted
to the user (or group containing the user) for DACL read or write
access to be granted. If the owner of an object requests READ_CONTROL
or WRITE_DAC, the access will always be granted.

Additional reference words: 3.10

INF: Maximum GlobalAddAtom() String Size Is 32K Characters
Article ID: Q94951

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under Win32, the maximum string length for the lpszName parameter of
GlobalAddAtom() is 32K characters (64K for Unicode) and/or available
memory.

Additional reference words: 3.10 3.0

INF: Administrator Access to Files
Article ID: Q102099
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

A user that is a member of the Administrator group is not
automatically granted access to any file on the local machine. For an
administrator to access a file, permission must be specifically
granted (as for any user) in the file's discretionary access control
list (DACL).

If an administrator wants to access a file that he or she is not
granted access to, the administrator must first take ownership of that
file. Once ownership is taken, the administrator will have full access
to the file. It is important to note that administrator cannot give
ownership back to the original owner. If this were so, the
administrator could take ownership of a file, examine it, and then
assign it back to the original owner without that owner's knowledge.

NOTE: Because administrators have backup privileges, an administrator
could back up a file (or entire volume) and restore it onto another
system. The administrator could then take ownership of a file on this
new system without the owner's knowledge. Please keep this in mind
when thinking about file security.

Additional reference words: 3.10

INF: Passing Security Information to SetFileSecurity()
Article ID: Q102100

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The SetFileSecurity() Win32 application programming interface (API)
takes a pointer to a Security Descriptor. This is because
SetFileSecurity() can set any of the following security information
for a file:

 The owner identifier of the file
 The primary group identifier of the file
 The discretionary access-control list (DACL) of the file
 The system access-control list (SACL) of the file

When you pass the SD and SECURITY_INFORMATION structure to
SetFileSecurity(), the SECURITY_INFORMATION structure identifies which
security information is to be set. The SECURITY_INFORMATION structure
is a DWORD that can be one of the following values:

 OWNER_SECURITY_INFORMATION
 GROUP_SECURITY_INFORMATION
 DACL_SECURITY_INFORMATION
 SACL_SECURITY_INFORMATION

Each of these values represents one of the security items listed
above. The SD that is passed to SetFileSecurity() is simply a
container for the security information being set for the specified
file. SetFileSecurity() examines the value in the SECURITY_INFORMATION
structure, extracts the appropriate information from the provided SD,
and applies it to the specified file's SD.

Additional reference words: 3.10

INF: Extracting the SID from an ACE
Article ID: Q102101

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

To access the security identifier (SID) contained in an access control
entry (ACE), the following syntax can be used:

 PSID pSID;

 if((((PACE_HEADER)pTempAce)->AceType) == ACCESS_ALLOWED_ACE_TYPE)
 {
 pSID=(PSID)&((PACCESS_ALLOWED_ACE)pTempAce)->SidStart;
 }

The "if" statement checks the type of ACE, which is one of the
following values:

 ACCESS_ALLOWED_ACE_TYPE
 ACCESS_DENIED_ACE_TYPE
 SYSTEM_AUDIT_ACE_TYPE

The conditional statement casts pTempAce (the pointer to the ACE) to a
PACCESS_ALLOWED_ACE structure. The address of the SidStart member is
then cast to a PSID and assigned to the pSID variable. pSID can now be
used with any Win32 Security application programming interface (API)
that takes a PSID as a parameter.

Additional reference words: 3.10

INF: How to Add an Access-Allowed ACE to a File
Article ID: Q102102

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

This article explains the process of adding an access-allowed (or
access-denied) access control entry (ACE) to a file.

Adding an access-allowed ACE to a file's access control list (ACL)
provides a means of granting or denying (using an access-denied ACE)
access to the file to a particular user or group. In most cases, the
file's ACL will not have enough free space to add an additional ACE,
and therefore it is usually necessary to create a new ACL and copy the
file's existing ACEs over to it. Once the ACEs are copied over and the
access-allowed ACE is also added, the new ACL can be applied to the
file's security descriptor (SD). This process is explained in detail
in the section below. Sample code is provided at the end of this
article.

MORE INFORMATION
================

At the end of this article is sample code that defines a function
named AddAccessRights(), which adds an access-allowed ACE to the
specified file allowing the specified access. Steps 1-17 in the
comments of the sample code are discussed in detail below:

 1. GetUserName() is called to retrieve the name of the currently
 logged in user. The user name is stored in plszUserName[] array.

 2. LookupAccountName() is called to obtain the SID of the user
 returned by GetUserName() in step 1. The resulting SID is stored
 in the UserSID variable and will be used later in the
 AddAccessAllowedACE() application programming interface (API)
 call. The LookupAccountName() API is also providing the user's
 domain in the plszDomain[] array. Please note that
 LookupAccountName() returns the SID of the first user or group
 that matches the name in plszUserName.

 3. GetFileSecurity() is used here to obtain a copy of the file's
 security descriptor (SD). The file's SD is placed into the ucSDbuf
 variable, which is declared a size of
 65536+SECURITY_DESCRIPTOR_MIN_LENGTH for simplicity. This value
 represents the maximum size of an SD, which ensures the SD will be
 of sufficient size.

 4. Here we initialize the new security descriptor (NewSD variable) by

 calling the InitializeSecurityDescriptor() API. Because the
 SetFileSecurity() API requires that the security item being set is
 contained in a SD, we create and initialize NewSD.

 5. Here GetSecurityDescriptorDacl() retrieves a pointer to the
 discretionary access control list (DACL) in the SD. The pointer is
 stored in the pACL variable.

 6. GetAclInformation() is called here to obtain size information on
 the file's DACL in the form of a ACL_SIZE_INFORMATION structure.
 This information is used when computing the size of the new DACL
 and when copying ACEs.

 7. This statement computes the exact number of bytes to allocate for
 the new DACL. The AclBytesInUse member represents the number of
 bytes being used in the file's DACL. We add this number to the
 size of an ACCESS_ALLOWED_ACE and the size of the user's SID.
 Subtracting the size of a DWORD is an adjustment required to
 obtain the exact number of bytes necessary.

 8. Here we allocate memory for the new ACL that will ultimately
 contain the file's existing ACEs plus the access-allowed ACE.

 9. In addition to allocating the memory, it is important to
 initialize the ACL structure as we do here.

10. Here we check the bDaclPresent flag returned by
 GetSecurityDescriptorDacl() to see if a DACL was present in the
 file's SD. If a DACL was not present, then we skip the code that
 copies the file's ACEs to the new DACL.

11. After verifying that there is at least one ACE in the file's DACL
 (by checking the AceCount member), we begin the loop to copy the
 individual ACEs to the new DACL.

12. Here we get a pointer to an ACE in the file's DACL by using the
 GetAce() API.

13. Now we add the ACE to the new DACL. It is important to note that
 we pass MAXDWORD for the dwStartingAceIndex parameter of AddAce()
 to ensure the ACE is added to the end of the DACL. The statement
 ((PACE_HEADER)pTempAce)->AceSize provides the size of the ACE.

14. Now that we have copied all the file's original ACEs over to our
 new DACL, we add the access-allowed ACE. The dwAccessMask variable
 will contain the access mask being granted. GENERIC_READ is an
 example of an access mask.

15. Because the SetFileSecurity() API can set a variety of security
 information, it takes a pointer to a security descriptor. For this
 reason, it is necessary to attach our new DACL to a temporary SD.
 This is done by using the SetSecurityDescriptorDacl() API.

16. Now that we have a SD containing the new DACL for the file, we set
 the DACL to the file's SD by calling SetFileSecurity(). The
 DACL_SECURITY_INFORMATION parameter indicates that we want the
 DACL in the provided SD applied to the file's SD. Please note that

 only the file's DACL is set, the other security information in the
 file's SD remains unchanged.

17. Here we free the memory that was allocated for the new DACL.

The below sample demonstrates the basic steps required to add an
access-allowed ACE to a file's DACL. Please note that this same
process can be used to add an access-denied ACE to a file's DACL.
Because the access-denied ACE should appear before access-allowed
ACEs, it is suggested that the call to AddAccessDeniedAce() precede
the code that copies the existing ACEs to the new DACL.

Sample Code

#define SD_SIZE (65536 + SECURITY_DESCRIPTOR_MIN_LENGTH)

BOOL AddAccessRights(CHAR *pFileName, DWORD dwAcessMask)
{
 // SID variables

 UCHAR psnuType[2048];
 UCHAR lpszDomain[2048];
 DWORD dwDomainLength = 250;
 UCHAR UserSID[1024];
 DWORD dwSIDBufSize=1024;

 // User name variables

 UCHAR lpszUserName[250];
 DWORD dwUserNameLength = 250;

 // File SD variables

 UCHAR ucSDbuf[SD_SIZE];
 PSECURITY_DESCRIPTOR pFileSD=(PSECURITY_DESCRIPTOR)ucSDbuf;
 DWORD dwSDLengthNeeded;

 // ACL variables

 PACL pACL;
 BOOL bDaclPresent;
 BOOL bDaclDefaulted;
 ACL_SIZE_INFORMATION AclInfo;

 // New ACL variables

 PACL pNewACL;
 DWORD dwNewACLSize;

 // New SD variables

 UCHAR NewSD[SECURITY_DESCRIPTOR_MIN_LENGTH];
 PSECURITY_DESCRIPTOR psdNewSD=(PSECURITY_DESCRIPTOR)NewSD;

 // Temporary ACE

 PVOID pTempAce;
 UINT CurrentAceIndex;

 // STEP 1: Get the logged on user name

 if(!GetUserName(lpszUserName,&dwUserNameLength))
 {
 printf("Error %d:GetUserName\n",GetLastError());
 return(FALSE);
 }

 // STEP 2: Get SID for current user

 if (!LookupAccountName((LPSTR) NULL,
 lpszUserName,
 UserSID,
 &dwSIDBufSize,
 lpszDomain,
 &dwDomainLength,
 (PSID_NAME_USE)psnuType))
 {
 printf("Error %d:LookupAccountName\n",GetLastError());
 return(FALSE);
 }

 // STEP 3: Get security descriptor (SD) for file

 if(!GetFileSecurity(pFileName,
 (SECURITY_INFORMATION)(DACL_SECURITY_INFORMATION),
 pFileSD,
 SD_SIZE,
 (LPDWORD)&dwSDLengthNeeded))
 {
 printf("Error %d:GetFileSecurity\n",GetLastError());
 return(FALSE);
 }

 // STEP 4: Initialize new SD

if(!InitializeSecurityDescriptor(psdNewSD,SECURITY_DESCRIPTOR_REVISION))
 {
 printf("Error %d:InitializeSecurityDescriptor\n",GetLastError());
 return(FALSE);
 }

 // STEP 5: Get DACL from SD

 if (!GetSecurityDescriptorDacl(pFileSD,
 &bDaclPresent,
 &pACL,
 &bDaclDefaulted))
 {
 printf("Error %d:GetSecurityDescriptorDacl\n",GetLastError());
 return(FALSE);
 }

 // STEP 6: Get file ACL size information

 if(!GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))
 {
 printf("Error %d:GetAclInformation\n",GetLastError());
 return(FALSE);
 }

 // STEP 7: Compute size needed for the new ACL

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

 // STEP 8: Allocate memory for new ACL

 pNewACL = (PACL)LocalAlloc(LPTR, dwNewACLSize);

 // STEP 9: Initialize the new ACL

 if(!InitializeAcl(pNewACL, dwNewACLSize, ACL_REVISION2))
 {
 printf("Error %d:InitializeAcl\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 10: If DACL is present, copy it to a new DACL

 if(bDaclPresent) // only copy if DACL was present
 {
 // STEP 11: Copy the file's ACEs to our new ACL

 if(AclInfo.AceCount)
 {
 for(CurrentAceIndex = 0; CurrentAceIndex < AclInfo.AceCount;
 CurrentAceIndex++)
 {
 // STEP 12: Get an ACE

 if(!GetAce(pACL,CurrentAceIndex,&pTempAce))
 {
 printf("Error %d: GetAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 13: Add the ACE to the new ACL

 if(!AddAce(pNewACL, ACL_REVISION, MAXDWORD, pTempAce,
 ((PACE_HEADER)pTempAce)->AceSize))
 {
 printf("Error %d:AddAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 }
 }
 }

 // STEP 14: Add the access-allowed ACE to the new DACL

 if(!AddAccessAllowedAce(pNewACL,ACL_REVISION2,dwAcessMask, &UserSID))
 {
 printf("Error %d:AddAccessAllowedAce",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 15: Set our new DACL to the file SD

 if (!SetSecurityDescriptorDacl(psdNewSD,
 TRUE,
 pNewACL,
 FALSE))
 {
 printf("Error %d:SetSecurityDescriptorDacl",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 16: Set the SD to the File

 if (!SetFileSecurity(pFileName, DACL_SECURITY_INFORMATION,psdNewSD))
 {
 printf("Error %d:SetFileSecurity\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 17: Free the memory allocated for the new ACL

 LocalFree((HLOCAL) pNewACL);
 return(TRUE);

}

Additional reference words: 3.10

INF: Computing the Size of a New ACL
Article ID: Q102103

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

When adding an access-allowed access control entry (ACE) to a
discretionary access control list (DACL), it is useful to know the
exact size needed for the new DACL. This is particularly useful when
creating a new DACL and copying over the existing ACEs. The below code
computes the size needed for a DACL if an access-allowed ACE is added:

 ACL_SIZE_INFORMATION AclInfo;

 GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

The call to GetAclInformation() takes a pointer to an ACL. This point
is supplied by your program and should point to the DACL you want to
add an access-allowed ACE to. The GetAclInformation() call fills out a
ACL_SIZE_INFORMATION structure, which provides size information on the
ACL.

The second statement computes what the new size of the ACL will be if
an access-allowed ACE is added. This is accomplished by adding the
current bytes being used to the size of an ACCESS_ALLOWED_ACE. We then
add the size of the security identifier (SID) (provided by your
application) that is to used in the AddAccessAllowedAce() API call.
Subtracting out the size of a DWORD is the final adjustment needed to
obtain the exact size. This adjust is to compensate for a place holder
member in the ACCESS_ALLOWED_ACE structure which is used in variable
length ACEs.

When adding an ACE to an existing ACL, often there is not enough free
space in the ACL to accommodate the additional ACE. In this situation,
it is necessary to allocate a new ACL and copy over the existing ACEs
and then add the access-allowed ACE. The above code can be used to
determine the amount of memory to allocate for the new ACL.

Additional reference words: 3.10

PRB: Determining Whether App Is Running as Service or .EXE
Article ID: Q94994
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When debugging Windows NT services, it may be necessary for the
service application to run interactively.

In this case, the application may determine whether it is being run as
a service or as an executable (interactively) by checking
GetLastError() after the call to StartServiceCtrlDispatcher() in the
application's startup code.

If the application is being run as an executable, the call to
GetLastError() will return with the following:

 ERROR_FAILED_SERVICE_CONTROLLER_CONNECT

More Information:

Sample Code

// Call StartServiceCtrlDispatcher() to set up the control
// interface. The API won't return until all services have been
// terminated. At that point, we just exit. See the
// StartServiceCtrlDispatcher() entry in Windows Help.

if (!StartServiceCtrlDispatcherW(ElfSvcDispatchTable) &&
 GetLastError() == ERROR_FAILED_SERVICE_CONTROLLER_CONNECT) {
// Set a flag indicating you're running as an .EXE, not a service.
}

Additional reference words: 3.10 3.1

INF: VirtualLock() Only Locks Pages into Working Set
Article ID: Q94996
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

VirtualLock() locks pages only into an application's working set; it
does not lock them absolutely into memory.

VirtualLock() lock pages into virtual memory, and therefore as long as
a given process is in real (physical) memory, the virtually locked
page is guaranteed to be in real memory as well. VirtualLock()
essentially means "this page is always part of my process's working
set."

However, the system is free to swap out any virtually locked pages if
it swaps out the whole process. And when the system swaps the process
back in, the virtually locked pages (similar to any virtual pages) may
end up residing in different real pages.

It is wise to use VirtualLock() very sparingly because it reduces the
flexibility of the system. Depending upon memory demands on the
system, the memory manager may vary the number of pages a process
can lock. Under typical conditions you can expect to be able to
VirtualLock() approximately 28 to 32 pages.

Additional reference words: 3.10 3.1

INF: Trapping Floating-Point Exceptions Under Windows NT
Article ID: Q94998
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The _controlfp() function is the portable equivalent to the
_control87() function, which is documented in the Microsoft C/C++
version 7.0 "Run-Time Library Reference."

To trap floating-point (FP) exceptions via try-except (such as
EXCEPTION_FLT_OVERFLOW), insert the following before doing FP
operations:

 // Get the default control word.
 int cw = _controlfp(0,0);
 // Set the exception bits ON.
 cw &=~(EM_OVERFLOW|EM_UNDERFLOW|EM_INEXACT|EM_ZERODIVIDE|
 EM_DENORMAL);
 // Set the control word.
 _controlfp(cw, MCW_EM);

This turns on all possible FP exceptions. To trap only particular
exceptions, choose only the flags that pertain to the exceptions
desired.

By default, NT has all the FP exceptions turned off, and thus
computations result in NAN or INFINITY rather than an exception. Note,
however, that if an exception occurs and an explicit handler does not
exist for it, the default exception handler will terminate the
process.

If you want to determine which mask bits are set and which are not
during exception handling, you need to use _clearfp() to clear the
floating-point exception. This routine returns the existing FP status
word, giving the necessary information about the exception. After
this, it is safe to query the chip for the state of its control word
with _controlfp(). However, as long as an unmasked FP exception is
active, most FP instructions will fault, including the fstcw in
_controlfp(). In summary, any handler for FP errors should have
_clearfp() as its first FP instruction.

Additional reference words: 7.00 3.10 3.1

INF: FormatMessage() Converts GetLastError() Codes
Article ID: Q94999
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The FormatMessage() application programming interface (API) allows you
to convert error codes returned by GetLastError() into error strings,
using FORMAT_MESSAGE_FROM_SYSTEM in the dwFlags parameter.

Example

// This code sample demonstrates how to get the system message string:

LPVOID lpMessageBuffer;

FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
 (LPTSTR) &lpMessageBuffer,
 0,
 NULL);

//... now display this string

Additional reference words: 3.10 3.1

INF: Validating User Accounts (Impersonation)
Article ID: Q96005
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Some applications need the ability to execute processes in the context
of another user. This impersonation restricts (or expands) the
permissions of the account in which the application was executed (file
access, permission to change system time, permission to shut down the
system, and so forth).

For example, an administrator executes a network server program that
allows remote users to log on to the system and perform actions, as if
they were logged on to the system locally. Because the administrator
initiated the server program and is currently logged on, all actions
the server program performs will be in the security context of the
administrator. If a guest user logs on remotely, he/she will have all
the permissions the administrator account has.

With the Win32 APIs (application programming interfaces),
impersonating a remote client is possible only via the
ImpersonateDDEClientWindow(), ImpersonateNamedPipeClient() and
RpcImpersonateClient() APIs.

More Information:

A common application of impersonation is network server programs
(daemons). For example, a remote login daemon needs a user to be able
to to log in to a remote host and have the host impose all
restrictions of the client login account.

If the daemon is using named pipes, dynamic data exchange (DDE), or a
remote procedure call (RPC) (using the named pipes transport), the
client account may be impersonated on the server daemon, which will
impose all the restrictions of the client's user account.

Using other network interfaces (such as Windows sockets--network
programming interfaces), security cannot be monitored by the system. A
workaround would be to impose password-level security on "login" to
the application. The passwords would be maintained by the application
in a private accounts database. However, none of the user actions are
performed in the security context of the actual client user's account.
Therefore, after the server/daemon has validated the client, the
server must be careful to only perform actions on behalf of the client
that the server knows the client should be allowed to do.

Another option is to create a network share with restricted access.
The WNetAddConnection2() API can verify access to this system
resources [disk or printer network resource (share)]. If the network

share was set up to allow access by a restricted group of people, the
WNetAddConnection2() could validate actual user accounts, maintained
by Windows NT. As with the previous option, the daemon must be careful
to perform only restricted actions on behalf of the client. This
option could be used for file server daemons.

Additional reference words: 3.10

INF: Types of File I/O Under Win32
Article ID: Q99173
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.10
--

Summary:

There are multiple types of file handles that can be opened under
Win32 and the C run time:

 Returned Type File Creation API API Set

 HANDLE CreateFile() Win32
 HFILE OpenFile()/_lcreat() Win32
 int _creat()/_open() C run time
 FILE * fopen() C run time

In general, these file I/O "families" are incompatible with each
other. On some implementations of the Win32 application programming
interfaces (APIs), the OpenFile()/_lcreat() family of file I/O APIs
are implemented as "wrappers" around the CreateFile() family of file
I/O APIs, meaning that OpenFile(), _lcreat(), and _lopen() end up
calling CreateFile(), returning the handle returned by CreateFile(),
and do not maintain any state information about the file themselves.
However, this is an implementation detail only and is NOT a design
feature.

Note that you cannot count on this being true on other implementations
of the Win32 APIs. Win32 file I/O APIs may be written using different
methods on other platforms, so reliance on this implementation detail
may cause your application to fail.

The rule to follow is to use one family of file I/O APIs and stick
with them--do not open a file with _lopen() and read from it with
ReadFile(), for instance. This kind of incorrect use of the file I/O
APIs can easily be caught by the compiler, because the file types
(HFILE and HANDLE respectively) are incompatible with each other and
the compiler will warn you (at warning level /w3 or higher) when you
have incorrectly passed one type of file handle to a file I/O API that
is expecting another, such as passing an HFILE type to
ReadFile(HANDLE, ...) in the above example.

More Information:

Compatibility

The OpenFile() family of file I/O functions is provided only for
compatibility with earlier versions of Windows. New Win32 applications
should use the CreateFile() family of file I/O APIs, which provide
added functionality that the earlier file I/O APIs do not provide.

Each of the two families of C run-time file I/O APIs are incompatible
with any of the other file I/O families. It is incorrect to open a
file handle with one of the C run-time file I/O APIs and operate on
that file handle with any other family of file I/O APIs, nor can a C
run-time file I/O family operate on file handles opened by any other
file I/O family.

_get_osfhandle()

For the C run-time unbuffered I/O family of APIs [_open(), and so
forth], it is possible to extract the operating system handle that is
associated with that C run-time handle via the _get_osfhandle() C
run-time API. The operating system handle is the handle stored in a C
run-time internal structure associated with that C run-time file
handle. This operating system handle is the handle that is returned
from an operating system call made by the C run time to open a file
[CreateFile() in this case] when you call one of the C run-time
unbuffered I/O APIs [_open(), _creat(), _sopen(), and so forth].

The _get_osfhandle() C run-time call is provided for informational
purposes only. Problems may occur if you read or write to the file
using the operating system handle returned from _get_osfhandle(); for
these reasons we recommend that you do not use the returned handle to
read or write to the file.

It is also possible to construct a C run-time unbuffered file I/O
handle from an operating system handle [a CreateFile() handle] with
the _open_osfhandle() C run-time API. In this case, the C run time
uses the existing operating system handle that you pass in rather than
opening the file itself. It is possible to use the original operating
system handle to read or write to the file, but it is very important
that you use only the original handle or the returned C run-time
handle to access the file, but not both, because the C run time
maintains state information that will not be updated if you use the
operating system handle to read or write to the file.

Additional reference words: 3.10

INF: FILE_READ_EA and FILE_WRITE_EA Specific Types
Article ID: Q102104

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The FILE_READ_EA and FILE_WRITE_EA specific types provide access to
read and write a file's extended attributes. Specific access types are
represented as bits in the access mask and are specific to the object
type associated with the mask.

Please note that these specific types are used in the definition of
constants such as FILE_GENERIC_READ, and are not intended to be
generally used when specifying access (generic access types are much
more appropriate).

Additional reference words: 3.10

INF: Chaining Parent PSP Environment Variables
Article ID: Q96209
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Some MS-DOS applications change the environment variables of their
parent application by chaining through the program segment prefix
(PSP). With Windows NT, this functionality doesn't work if the parent
is a 32-bit application.

When an MS-DOS application is started from a single command shell
(SCS), the application inherits a new copy of the environment
variables. Any attempts by the MS-DOS application to modify its
parent's environment variables will not work. When the MS-DOS
application exits, the SCS will be "restored" to its original state.
If another MS-DOS application is started, the second application will
receive the same environment that the first MS-DOS application
received.

If an MS-DOS application (B) is spawned by another MS-DOS application
(A), any modifications to application A's environment variables will
be reflected when application B exits.

More Information:

For more information on how environment variables are set, query on
the following words in the Microsoft Knowledge Base:

 set and environment and variables and Windows and NT

Additional reference words: 3.10

INF: System GENERIC_MAPPING Structures
Article ID: Q102105

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

There is not a Win32 application programming interface (API) to
retrieve the GENERIC_MAPPING structures for Windows NT objects. The
MapGenericMask() Win32 API is intended to use GENERIC_MAPPING
structures associated with private objects created by the application.

Additional reference words: 3.10

INF: Default Stack in Win32 Applications
Article ID: Q97786
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

By default, space is reserved for applications in the following
manner:

 1 megabyte (MB) reserved (total virtual address space for the stack)

 4K committed (total physical memory allocated when stack is
 created)

 Note: The -heap linker option can be used to modify both of these
 values.

The operating system will grow the stack as needed by committing 4K
blocks out of the reserved stack memory. Once all of the reserved
memory has been committed, Windows NT will attempt to continue to grow
the stack into the memory adjacent to the memory reserved for the
stack, as shown in the following:

 |<--- Total 1 MB for stack --->|<--- Adjacent memory --->|
 --
4K	1020K
 --

However, once the stack grows to the point that the adjacent area is
not free (and this may happen as soon as the reserved 1 MB has been
committed), the stack cannot grow any farther. Therefore, it is very
risky to rely on this memory being free. Applications should take care
to reserve all the memory that will be needed by increasing the amount
of memory reserved for the stack.

In other cases, it may be desirable to reduce the amount of memory
reserved for the stack.

The /STACK option in the linker and the STACKSIZE statement in the DEF
file can be used to change both the amount of reserved memory and the
amount of committed memory. The syntax for each method is shown below:

 /STACK:[reserve][,commit]

 STACKSIZE [reserve][,commit]

More Information:

Each new thread gets its own stack space of committed and reserved
memory. If a new size is not specified in the CreateThread() call, the
new thread takes on the same stack size as the thread that created it,
whether that be the default value, a value defined in the DEF file, or
by the linker switch.

The system handles committing more reserved stack space when needed,
but cannot reserve or commit more than the total amount initially
reserved (or committed if no additional is reserved). Remember that
the only resource consumed by reserving space is addresses in your
process. No memory or pagefile space is allocated. When the memory is
actually committed, both memory and pagefile resources are allocated.
There is no harm in reserving a large area if it might be needed.

As always, automatic variables are placed on the stack. All other
static data is located in the process address space. Because they are
static, they do not need to be managed like heap memory.

Note that under Win32s, stacks are limited to a maximum of 128K.

Additional reference words: 3.10

PRB: Code in DLL Causes Access Violation C00000005
Article ID: Q97787
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 A DLL entry point with __cdecl convention results in an access
 violation (specifically, C0000005).

CAUSE
 Windows NT expects that the dynamic-link library (DLL) entry point
 will have a calling convention of __stdcall. If the entry point is
 not explicitly given a calling convention, the compiler's default
 convention is __cdecl.

 This is not an obvious mistake to track down. Under the debugger,
 you will notice that you can trace into the entry point, but the
 next function call will fail. Thus, it appears as if the execution
 of the entry point succeeded. The problem is really that the stack
 was not properly cleaned up.

RESOLUTION
 To correct the problem, do one of the following

 - Add WINAPI to the function prototype and declaration so that the
 function will have the __stdcall calling convention.

 -or-

 - Compile with -Gz so that by default, all functions will be
 declared with the __stdcall convention. If you are using
 NTWIN32.MAK, the macro "scall" is defined for this purpose.

 In addition, the entry point should be specified with the -entry
 linker switch. For example, if the entry point is named
 LibMain(), add the following to the link command line:

 -entry:LibMain$(DLLENTRY)

More Information:

The same problem occurs if callback functions, such as dialog box
procedures, are not declared __stdcall. The solutions described above
apply in this situation as well.

Additional reference words: 3.10

INF: Starting and Terminating 16-Bit Windows Applications
Article ID: Q105676
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

A 16-bit Windows application running under Windows NT is running as a
thread in a single virtual MS-DOS machine (VDM). These threads are
nonpreemptively scheduled. A 16-bit Windows application shares an
address space and an input queue with other 16-bit Windows
applications. Objects created by a thread (application) are owned by
the thread (application). This environment is called WOW (Windows on
Win32).

When a 16-bit application is started via CreateProcess(), the process
handle and the thread handle contained in the PROCESS_INFORMATION
structure are pseudo-handles. The only application programming
interfaces (APIs) that can use the process handle are
WaitForSingleObject(), WaitForMultipleObjects(), and
WaitForInputIdle().

A common question is "How can I terminate a 16-bit process from a
32-bit process?" However, as implied above,
PROCESS_INFORMATION.hProcess cannot be used in TerminateProcess() and
PROCESS_INFORMATION.dwThreadId cannot be used in PostThreadMessage().

One way to terminate an individual 16-bit Windows application is to
enumerate the desktop windows using EnumWindows(), determine which is
the correct window, obtain the thread ID with
GetWindowThreadProcessId(), and post a WM_QUIT message via
PostThreadMessage() to terminate the application.

Additional reference words: 3.10

INF: Why LoadLibraryEx() Returns an HINSTANCE
Article ID: Q102128
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

In the Win32 Help files, LoadLibrary() is typed to return a HANDLE,
while LoadLibraryEx() is prototyped to return a HINSTANCE.

An HINSTANCE return from LoadLibraryEx() is useful because processes
that load dynamic-link libraries (DLLs) do not necessarily want the
overhead of having to page in code for a DllEntryPoint routine when
the DLL does not need to initialize information. This is especially
useful when you have multiple threads that attach to already loaded
DLLs. In this case, you may want to not implicitly load via
LoadLibrary() and instead use LoadLibraryEx() to explicitly load
without having to page in the code for every attach.

LoadLibraryEx() is also useful if you want to retrieve resources from
a DLL or an EXE. In this case, you would use LoadLibraryEx() to load
the module you want into your address space, without executing
DLLEntryPoint, and then use the resource application programming
interfaces (APIs) to access the data.

Additional reference words: 3.10

INF: CTRL+C Exception Handling Under WinDbg
Article ID: Q97858
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

An exception is raised for CTRL+C only if the process is being
debugged. The purpose is to make it convenient for the debugger to
catch CTRL+C in console applications. For the purposes of this
article, the debugger is assumed to be WinDbg.

When the console server detects a CTRL+C, it uses CreateRemoteThread()
to create a thread in the client process to handle the event. This new
thread then raises an exception IF AND ONLY IF the process is being
debugged. At this point, the debugger either handles the exception or
it continues the exception unhandled.

The "gh" command marks the exception as having been handled and
continues the execution. The application does not notice the CTRL+C,
with one exception: CTRL+C causes alertable waits to terminate. This
is most noticable when executing:

 while((c = getchar()) != EOF) - or - while(gets(s))

It is not possible to get the debugger to stop the wait from
terminating.

The "gn" command marks an exception as unhandled and continues the
execution. The handler list for the application is searched, as
documented for SetConsoleCtrlHandler(). The handler is executed in the
thread created by the console server.

After the exception is handled, the thread created to handle the event
terminates. The debugger will not continue to execute the application
if Go On Thread Termination is not enabled (from the Options menu,
choose Debug, and select the Go On Thread Termination check box). The
thread and process status indicate that the application is stopped at
a debug event. As soon as the debugger is given a go command, the dead
thread disappears and the application continues execution.

More Information:

There are three cases where CTRL+C doesn't cause the program to stop
executing (instead it causes a "page down"):

1. When CTRL+C is already being handled.

2. When the debugger is in the foreground and a source window has the
 focus (both must be true).

3. When the CTRL+C exception is disabled (through the Debugger

 Exceptions dialog box).

This follows the convention of the WordStar/Turbo C/Turbo Pascal
editor commands.

Additional reference words: 3.10

PRB: New Parameter for the CreateService() API
Article ID: Q97921

--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The online Win32 application programming interface (API) reference
provided with the Win32 Software Development Kit (SDK) March 1993
preliminary release incorrectly documents CreateService() as having 12
parameters. The header file WINSVC.H correctly documents
CreateService() as having a 3rd parameter named lpDisplayName.

The lpDisplayName parameter is the string that is displayed by the
Service application and when you use the command line "net
start|stop|pause|continue" syntax.

Additional reference words: 3.10

INF: The Use of the SetLastErrorEx() API
Article ID: Q97926
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SetLastErrorEx() is intended for better debugging support, not for
passing additional error information. This function is not fully
realized under the current version of Windows NT.

The SetLastErrorEx() application programming interface (API) differs
from the SetLastError() API only in that it raises a debug "RIP"
event. The RIP event is intended to give text to the debugger so that
the user can retry, ignore, and so forth, these errors.
SetLastErrorEx() raises an exception only if SetDebugErrorLevel() has
been called by the debugger to allow the errors to be passed on.

The error type can be determined from the debugger by examining the
debug event structure that is passed with the event. The debug event
structure contains a RIP_INFO substructure.

Additional reference words: 3.10

INF: Passing a Pointer to a Member Function to the Win32 API
Article ID: Q102352

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Many of the Win32 application programming interfaces (APIs) call for a
callback routine. One example is the lpStartAddr argument of
CreateThread():

 HANDLE CreateThread(lpsa, cbStack, lpStartAddr, lpvThreadParm,
 fdwCreate, lpIDThread)

 LPSECURITY_ATTRIBUTES lpsa; /* Address of thread security attrs */
 DWORD cbStack; /* Initial thread stack size*/
 LPTHREAD_START_ROUTINE lpStartAddr; /* Address of thread function */
 LPVOID lpvThreadParm; /* Argument for new thread*/
 DWORD fdwCreate; /* Creation flags*/
 LPDWORD lpIDThread; /* Address of returned thread ID */

When attempting to use a member function as the thread function, the
following error is generated:

 error C2643: illegal cast from pointer to member

The problem is that the function expects a C-style callback, not a
pointer to a member function. A major difference is that member
functions are called with a hidden argument called the "this" pointer.
In addition, the format of the pointer isn't simply the address of the
first machine instruction, as a C pointer is. This is particularly
true for virtual functions.

If you want to use a member function as a callback, you can use a
static member function. Static member functions do not receive the
"this" pointer and their addresses correspond to an instruction to
execute.

Static member functions can only access static data, and therefore to
access nonstatic class members, the function needs an object or a
pointer to an object. One solution is to pass in the "this" pointer as
an argument to the member function.

MORE INFORMATION
================

This situation occurs with callback functions of other types as well,
such as:

 DLGPROC GRAYSTRINGPROC

 EDITWORDBREAKPROC LINEDDAPROC
 ENHMFENUMPROC MFENUMPROC
 ENUMRESLANGPROC PROPENUMPROC
 ENUMRESNAMEPROC PROPENUMPROCEX
 ENUMRESTYPEPROC TIMERPROC
 FONTENUMPROC WNDENUMPROC
 GOBJENUMPROC

For more information on C++ callbacks, please see the May issue of the
"Windows Tech Journal."

The following sample demonstrates how to use a static member function
as a thread function, and pass in the "this" pointer as an argument.

Sample Code

#include <windows.h>

class A
{
public:
 int x;
 int y;

 A() { x = 0; y = 0; }

 static StartRoutine(A *); // Compiles clean, includes "this" pointer
};

void main()
{
 A a;

 DWORD dwThreadID;

 CreateThread(NULL,
 0,
 (LPTHREAD_START_ROUTINE)(a.StartRoutine),
 &a, // Pass "this" pointer to static member fn
 0,
 &dwThreadID
);
}

Additional reference words: 3.10

INF: File Manager Passes Short Filename as Parameter
Article ID: Q98575
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When starting an application from File Manager by double-clicking a
document associated with the application, if the document resides on
an NTFS partition and has a long (non-8.3 form) filename, File Manager
will pass the short version of the filename (also known as the MS-DOS
alias or 8.3 name) to the associated application. This is done for
compatibility reasons; applications not aware of long filenames
(16-bit applications) can still function correctly.

This can create confusion, however, if the application displays the
name of the file the application was started with; the short name is
displayed even though the long name was double-clicked.

You can avoid possible confusion by always expanding any filenames
passed to an application via the command line. Do this by calling the
FindFirstFile() application programming interface (API) on these
filenames. FindFirstFile() will always return the file system's
version of the filename in the WIN32_FIND_DATA.cFileName structure
member, which the application can then use in all further references
to the file without any problems.

Additional reference words: 3.10 file name

INF: Windows NT Virtual Memory Manager Uses FIFO
Article ID: Q98216
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

On page 193 of "Inside NT," Helen Custer states that the Windows NT
virtual memory manager uses a FIFO (first in, first out) algorithm, as
opposed to a LRU (least recently used) algorithm, which the Windows
virtual memory manager uses. While it is true that FIFO can result in
a commonly used page being discarded or paged to the pagefile, there
are reasons why this algorithm is preferable.

Here are some of the advantages:

 - FIFO is done on a per-process basis; so at worst, a process that
 causes a lot of page faults will slow only itself down, not the
 entire system.

 - LRU creates significant overhead--the system must update its page
 database every single time a page is touched. However, the database
 may not be properly updated in certain circumstances. For example,
 suppose that a program has good locality of reference and uses a
 page constantly so that it is always in memory. The operating
 system will not keep updating the timestamp in the page database,
 because the process is not hitting the page table. Therefore this
 page may age even though it is in nearly constant use.

 - Pages that are "discarded" are actually kept in memory for a while,
 so if a page is really used frequently, it will be brought back
 into memory before it is written to disk.

Additional reference words: 3.10 file

INF: Determining Memory Usage Under Windows NT
Article ID: Q98721
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following are tools available in Windows NT that can help you
determine memory usage in your system:

PMON - Allows you look at all the processes on the system, and monitor
their memory usage and private commitment. This tool is
character-mode-based and updates every 5 seconds.

PVIEW - Provides information at an individual process's address space
and memory usage. This function provides more detail than PMON.

PWALK - A GUI tool allowing you to examine the address space of your
application or another running .EXE. See the Process Walker icon in
the Win32 SDK group in Program Manager. Process Walker provides more
detail than PVIEW.

More Information:

The easiest way for you to determine your memory usage is to run PMON.
Here's a sample output screen from PMON:

 Process Monitor: Total Memory: 16192Kb Availble 4348Kb PgFlts:38
 Commit: 31692Kb / 19500Kb Limit: 40028Kb Pool: 1508Kb /2044Kb

 Mem Mem Page Flts Commit Thd Image
%CPU CPU Time Usage Diff Faults Diff Charge Cnt Name
 896 0 2201408 0 File Cache
 82 10:21:10 16 0 0 0 0 1 Idle Process
 0 0:23:52 16 0 771 0 32 20 System Process
 0 0:00:00 0 0 106 0 192 6 smss.exe
 6 0:54:15 2140 0 55528 0 3832 29 csrss.exe
 0 0:00:01 0 0 550 0 456 2 winlogon.exe
 0 0:00:06 0 0 2044 0 952 4 screg.exe
 0 0:00:07 0 0 8153 0 592 8 lsass.exe
 0 0:00:25 0 0 6185 0 640 4 spoolss.exe
 0 0:00:00 0 0 1193 0 348 5 EventLog.exe
 0 0:00:00 0 0 245 0 332 2 mcsxnsvc.exe
 0 0:00:08 0 0 8830 0 264 2 ubnbsvc.exe
 0 0:00:00 0 0 713 0 552 7 netdde.exe
 0 0:00:01 16 0 7 0 4 8 No Name Found
 0 0:00:00 0 0 495 0 316 2 clipsrv.exe
 0 0:00:20 120 0 16892 0 652 12 lmsvcs.exe
 0 0:00:00 0 0 763 0 484 7 MsgSvc.exe
 0 0:00:00 0 0 450 0 296 1 nddeagnt.exe
 0 0:00:01 0 0 926 0 240 1 taskman.exe

 0 0:00:03 348 0 1805 0 324 2 progman.exe
 0 0:00:31 0 0 5784 0 224 1 CMD.exe
 0 0:00:50 156 0 13712 0 120 1 PERFMTR.EXE
 0 0:00:03 0 0 912 0 144 1 CMD.exe
 0 0:01:15 20 0 5379 0 4052 4 ntvdm.exe
 0 0:00:03 0 0 1352 0 156 1 CMD.exe
 0 0:15:28 308 0 43509 0 280 1 PMON.EXE
 0 0:00:47 252 0 16776 0 1828 2 I386KD.EXE
 2 0:05:17 2652 0 3056 0 900 3 MSMAIL32.EXE
 0 0:01:07 224 0 23298 0 600 3 MAILSP32.EXE
 0 0:00:00 20 0 199 0 328 1 STATUS.EXE
 7 0:00:14 1060 0 1529 38 360 1 slm.exe

The first line indicates that the current machine has 16 megabytes
(MB) of memory, of which 4348K is unused, and there have been 38 page
faults since the last update.

The second line indicates that the total commitment is 31692K with the
private commitment at 19500K. Private commits are writable pages that
are not shared; they are private to that process, usually created with
LocalAlloc() or VirtualAlloc(). The difference between these two
numbers, in this case 12196K, is the amount of memory used by pagable
drivers, paged pool, and page-file-backed shared memory regions.
Drivers have about 1 MB of pagable memory, and the system we are
examining has about 2 MB of paged pool; therefore, subtracting 3 MB
from the 12 MB of other commitment, yields 9 MB of shared virtual
memory.

The total commit limit is 40028K. Nonpaged pool is using 1508K; paged
pool is using 2044K.

The rest of the screen describes the memory consumption on a
process-by-process basis. The Mem Usage column is the amount of
physical memory in kilobytes that application is using. If it is 0,
the application has been entirely paged out of memory. The Mem Diff
column is the difference in memory usage in kilobytes over the last 5
seconds. The other column of interest is the Commit Charge. This is
the total number of writable nonshared pages in the process.

From a quick scan of the list, the Windows subsystem CSRSS.EXE is
consuming just over 2 MB with almost 4 MB committed. MSMAIL32 is
consuming around 2.5 MB with 3 MB committed. NTVDM is consuming 20K
with 4 MB committed.

The larger these numbers are, the poorer the system performance. CSRSS
generally is between 2 and 3 MB with 3 to 4 MB committed. The more
memory you have, the more memory an application is given. Therefore,
if you have 2 MB, CSRSS will consume about 5 MB. If your system seems
to be sluggish and PMON shows numbers that seem excessive, you should
check for memory leaks. Memory leaks happen when certain commands are
executing over and over causing huge commitments in certain processes.

Additional reference words: 3.10

INF: Getting the Net Time on a Domain
Article ID: Q98722

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When trying to do a

 net time /domain:egdomain /set

you may get a message saying the account is not known or the password
is invalid. This can happen if you are logged on using an account
whose name is spelled "Administrator", but the account is a different
Administrator account than the one on the domain controller. For
example, if you are logged on as EGMACHINE\Administrator, and attempt

 net time /domain:egdomain /set

you will get an error message because EGMACHINE\Administrator is not
the same account as EGDOMAIN\Administrator.

The solution is to log off of EGMACHINE, log back on as
EGMACHINE\PowerUsr1, then execute the command. Note that a privilege
is needed to set the time on a machine. In the previous example, the
account, EGMACHINE\PowerUsr1, was used to remind us that power users
have the needed privilege.

More Information:

When running Windows NT while logged on to a domain, doing a NET TIME
without the /DOMAIN parameter, as mentioned above, probably will not
yield the desired results. However, because you are logged on to a
domain, you can do

 net time /domain /set

and a domain controller from the domain you are logged on to will be
used. In other words, if you are logged on to a domain, the /DOMAIN
parameter is necessary, but the actual domain name can optionally be
left to default to the domain you're currently participating in. If
your machine is joined to the a domain, that domain will be the
default domain for NET TIME /DOMAIN.

Additional reference words: 3.10

INF: Noncontinuable Exceptions
Article ID: Q98840
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

An exception is noncontinuable if the event isn't continuable in the
hardware, or if continuation makes no sense. For example, if the
caller's stack is corrupted while trying to post an exception,
continuing from the bad stack exception would not be useful.

The noncontinuable exception does not terminate the application, and
therefore an application that can succeed in catching the exception
and running after a noncontinuable exception is free to do so.
However, a noncontinuable exception typically arises as a result of a
corrupted stack or other serious problem, making it very difficult to
recover from the exception.

Additional reference words: 3.10 non-continuable

INF: Validating User Account Passwords Under Windows NT
Article ID: Q98891
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Windows NT stores account names and passwords in the security accounts
manager (SAM) database. Windows NT checks this database to validate
passwords when users log on.

At this time, there is no nonprivileged service that takes a user name
and a password and returns an indication of whether or not the user
account password is valid. There is a privileged service that handles
this password validation; it is for use by logon processes such as
winlogon. This service is not yet published. A nonprivileged service
that will perform password validation is under consideration for the
versions of Windows NT that will follow the first released product.

More Information:

The SAM application programming interface (API) functions were not
exposed due to their changing nature. Microsoft is working on a
developer's kit that will provide guidelines and tutorial information
about most of the security API functions, including the SAM APIs.

Exposing the SAM API will not compromise security because the
passwords are encrypted within SAM; they are one-way encrypted such
that not even SAM can decrypt them. Even a dictionary attack (encrypt
an entire dictionary and see if any of the words match) would not be
easy, because there is no SAM API function that will read the
encrypted password.

Additional reference words: 3.10 3.1 non-privileged

PRB: Unexpected Result of SetFilePointer() with Devices
Article ID: Q98892

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 Open a floppy drive with CreateFile():

 h = CreateFile("\\\\.\\a:", ...);

 Use SetFilePointer() to advance the file pointer associated with the
 file handle returned from CreateFile():

 SetFilePointer(h, // file handle
 5, // distance (in bytes) to move file pointer
 NULL, // optional high 32-bits of distance
 FILE_BEGIN // specifies the starting point
);

 If the offset is not a multiple of the sector size of the floppy
 drive, the function will return success; however, the pointer will
 not be exactly where requested. The pointer value is rounded down
 to the beginning of the sector that the pointer value is in.

CAUSE
 The behavior of this application programming interface (API) is by
 design for the following reasons:

 - The I/O system is unaware of device particulars such as sector
 size; any offset is valid.

 - SetFilePointer() is very frequently used. Because speed is an
 important goal for Windows NT, time is not spent on querying
 device particulars and detecting such errors.

 - The logic to handle this situation is built into the file system,
 which actually performs the rounding, and therefore there was no
 need to put this into the code for SetFilePointer().

RESOLUTION
 When using SetFilePointer() with a handle that represents a floppy
 drive, the offset must be a multiple of the sector size for the
 floppy drive in order for the function to perform as expected.

More Information:

Think of a file pointer as merely a stored value, which is where the
next read or write will take place. In fact, it is possible to

override this value on either the read or write itself, using certain
APIs, by supplying a different location. The new pointer location is
remembered after the operation. Therefore, the operation of "setting a
file pointer" merely means to go store a large integer in a cell in
the system's data structures, for possible use in the next file
operation. In the case of a handle to a device, the file pointer must
be on a sector boundary.

In a similar way, ReadFile() only reads amounts that are multiples of
the sector size if it is passed a handle that represents a floppy
drive.

Additional reference words: 3.10 3.1

INF: Limit on the Number of Bytes Written Asynchronously
Article ID: Q98893
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

There is a limit to the number of bytes that can be written with
WriteFile() using asynchronous I/O (FILE_FLAG_OVERLAPPED specified).
This limit depends on the size of your system.

Asynchronous (overlapped) I/O consumes system resources for a long
time. For example, the memory used is locked in the process working
set until the I/O completes. To limit the amount of system resources
used asynchronously by an application, the system charges asynchronous
I/O to the working set of the process requesting the I/O.

While the working set size is dynamically raised and lowered based on
the load, there are minimum and maximum values. These values are based
on system size: consider up to 12 megabytes (MB) a small system,
between 12 MB and 19 MB a medium system, and greater than 19 MB a
large system. Each process is guaranteed a minimum working set for
performance reasons; about 120K for small systems, 160K for large
systems, and 245K for large systems.

When system resources are heavily taxed, a process is confined to its
maximum working set. Asynchronous I/Os may never cause you to exceed
your maximum working set, because once you are allowed to initiate an
asynchronous I/O, the page cannot be taken away if memory becomes
tight. The maximum working set sizes are about 300K for a small
system, 716K for a medium system, and 1.5 MB for a large system.

More Information:

The following code can be used to experiment with the maximum number
of bytes that can be written using asynchronous I/O. Simply change the
line to vary the number of bytes that the code attempts to write:

 #define NBR_BYTE 700000

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <assert.h>

#include <windows.h>

#define NBR_BYTE 700000

int main(void)
{
 char *c;
 HANDLE hFile;
 DWORD byteWrite;
 OVERLAPPED overLap;
 DWORD err;
 BOOL result;

 c = malloc(NBR_BYTE);
 assert(c != NULL);

 overLap.hEvent = CreateEvent(NULL, FALSE, FALSE, "event1");
 assert(overLap.hEvent);

 hFile = CreateFile("test", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED |
 FILE_FLAG_WRITE_THROUGH,
 NULL);

 if(hFile == INVALID_HANDLE_VALUE)
 {
 free(c);
 printf("error opening file\n");
 exit(0);
 }

 overLap.Offset = 0;
 overLap.OffsetHigh = 0;
 result = WriteFile(hFile, c, NBR_BYTE, &byteWrite, &overLap);
 if(result == FALSE)
 {
 err = GetLastError();
 if(err != ERROR_IO_PENDING)
 {
 free(c);
 printf("Error: %d\n", GetLastError());
 exit(0);
 }
 }

 free(c);

 return 0;
}

Additional reference words: 3.10 3.1 asynch

INF: Setting File Permissions
Article ID: Q98952

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In Windows NT, local access controls can be set on just NTFS
partitions, not FAT or HPFS partitions or floppies. Read/execute-only
permissions should work properly on a CD-ROM.

The exception is that ACLs (access control lists) can be set on
shares, regardless of the file system, to control access to all the
files within that share. For example, you can give read access to
everyone, but give full access just to members of a certain group or
to certain individuals.

Additional reference words: 3.10 3.1

INF: Detecting Closure of Command Window from a Console App
Article ID: Q102429

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

Win32 console applications run in a command window. For the console
application to detect when the console is closing, register a console
control handler and look for the following values in your case
statement:

 CTRL_CLOSE_EVENT User closes the console
 CTRL_LOGOFF_EVENT User logs off
 CTRL_SHUTDOWN_EVENT User shuts down the system

For an example, see the CONSOLE sample. For more information, see the
entry for SetConsoleCtrlhandler() in the Win32 application programming
interface (API) reference.

Additional reference words: 3.10

INF: Definition of a Protected Server
Article ID: Q102447
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The Win32 application programming interface (API) reference briefly
discusses creating a "protected server" that assigns security to
private objects. This article explains the concept of a protected
server" and its relationship to private objects.

A protected server is an application that provides services to
clients. These services could be as simple as saving and retrieving
information from a database while issuing security checks to verify
that the client has proper access.

A private object is an application-defined data structure that both
the client and server recognize. Private objects are not registered
with nor recognized by the Windows NT operating system; they are
entirely application-defined.

It is not uncommon for security to be assigned to private objects in a
protected server's database. For example, when a client asks the
server to create a new object in the database, the server could use
the CreatePrivateObjectSecurity() Win32 API to create a security
descriptor (SD) for the new private object. The server would then
store the SD with the private object in the database. It is important
to note that there is nothing in the SD that associates it with the
private object. Instead, it is up to the protected server to maintain
that association in the private object or in the database. It is
likely that the private object and the associated SD would be stored
together in a single database record.

A protected server application is responsible for checking a client's
access before providing information. For example, when a client asks
the server to retrieve some data, the server would go out and locate
the record (which would contain the private object and SD) and bring a
copy of the SD into memory. It would then call the AccessCheck() Win32
API passing the SD, the clients access token, and the desired access
mask. AccessCheck() will check the client's access against the
object's SD to determine if access is permitted. Depending on the
result of AccessCheck(), the protected server would either provide the
requested information or deny access.

In conclusion, a protected server is a application that performs
operations on private objects that are entirely user defined. The
protected server is responsible for associating security descriptors
to those objects and must take the steps necessary to verify a
client's access.

Additional reference words: 3.10

INF: SetTimer() Should Not Be Used in Console Applications
Article ID: Q102482
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

SetTimer() was not designed to be used with a console application
because it requires a message loop to dispatch the timer signal to the
timer procedure. In a console application, this behavior can be easily
emulated with a thread that is set to wait on an event.

SetTimer() can work within a console application, but it requires a
thread in a loop calling GetMessage() and DispatchMessage().

For example,

 while (1)
 {
 GetMessage();
 DispatchMessage();
 }

Because this requires a thread looping, there is no real advantage to
adding a timer to a console application over using a thread waiting on
an event.

Another option is to use a multimedia timer, which does not require a
message loop and has a higher resolution. See the help for
timeSetEvent() and the Multimedia overview. Any application using
Multimedia calls must include MMSYSTEM.H, and must link with
WINMM.LIB.

Additional reference words: 3.10

INF: Security Attributes on Named Pipes
Article ID: Q102798
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The March release of the Windows NT beta (and earlier) does not
require security attributes on pipes. It was valid at that time to
enter NULL for the last parameter of the Win32 application programming
interface (API) CreateNamedPipe().

Windows NT now requires security attributes for pipes. Please note
that setting the security attributes parameter to NULL does not
indicate that you want a NULL security descriptor (SD), rather it
indicates that you want to inherit the security descriptor of the
current access token. This generally means that any client wanting to
connect to your pipe server must have the same security attributes as
the user that started the server. For example, if the user who started
the server was the administrator of the machine, then any client who
wants to connect must also be an administrator to that machine.

Below is an code sample that demonstrates creating a named pipe with a
NULL security descriptor.

 HANDLE hPipe; // Pipe handle.
 SECURITY_ATTRIBUTES sa; // Security attributes.
 PSECURITY_DESCRIPTOR pSD; // Pointer to SD.

 // Allocate memory for the security descriptor.

 pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
 SECURITY_DESCRIPTOR_MIN_LENGTH);

 // Initialize the new security descriptor.

 InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION);

 // Add a NULL descriptor ACL to the security descriptor.

 SetSecurityDescriptorDacl(pSD, TRUE, (PACL) NULL, FALSE);

 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = pSD;
 sa.bInheritHandle = TRUE;

 // Create a local named pipe with a NULL security descriptor.

 hPipe = CreateNamedPipe(
 "\\\\.\\PIPE\\test", // Pipe name = 'test'.

 PIPE_ACCESS_DUPLEX // 2-way pipe.
 | FILE_FLAG_OVERLAPPED, // Use overlapped structure.
 PIPE_WAIT // Wait on messages.
 | PIPE_READMODE_MESSAGE // Specify message mode pipe.
 | PIPE_TYPE_MESSAGE,
 MAX_PIPE_INSTANCES, // Maximum instance limit.
 OUT_BUF_SIZE, // Buffer sizes.
 IN_BUF_SIZE,
 TIME_OUT, // Specify time out.
 &sa); // Security attributes.

It is important to note that by specifying TRUE for the fDaclPresent
parameter and NULL for pAcl parameter of the
SetSecurityDescriptorDacl() API, a NULL access control list (ACL) is
being explicitly specified.

Additional reference words: 3.10

INF: Using Temporary File Can Improve Application Performance
Article ID: Q103237

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The use of temporary files can significantly increase the performance
of an application. By using CreateFile() with the
FILE_ATTRIBUTE_TEMPORARY flag, you let the system know that the file
is likely to be short lived. The temporary file is created as a normal
file. The system needs to do a minimal amount of lazy writes to the
file system to keep the disk structures (directories and so forth)
consistent. This gives the appearance that the file has been written
to the disk. However, unless the Memory Manager detects an inadequate
supply of free pages and starts writing modified pages to the disk,
the Cache Manager's Lazy Writer may never write the data pages of this
file to the disk. If the system has enough memory, the pages may
remain in memory for any arbitrary amount of time. Because temporary
files are generally short lived, there is a good chance the system
will never write the pages to the disk.

To further increase performance, your application might mark the file
as FILE_FLAG_DELETE_ON_CLOSE. This indicates to the system that when
the last handle of the file is closed, it will be deleted. Although
the system generally purges the cache to ensure that a file being
closed is updated appropriately, because a file marked with this flag
won't exist after the close, the system foregoes the cache purge.

Additional reference words: 3.20

INF: Calling a Win32 DLL from a Win16 Application Under WOW
Article ID: Q104009
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

Under Windows NT, it is possible to call routines in a Win32
dynamic-link library (DLL) from a Win16 application using an interface
called Windows on Win32 (WOW) Generic Thunking. This is not to be
confused with Win32s Universal Thunks, which provides this
functionality under Windows 3.1.

WOW presents a few new 16-bit application programming interfaces
(APIs) that allow you to load the Win32 DLL, get the address of the
DLL routine, call the routine (passing it up to thirty-two 32-bit
arguments), convert 16:16 (WOW) addresses to 0:32 addresses (useful if
you need to build up a 32-bit structure that contains pointers and
pass a pointer to it), and free the Win32 DLL.

The Generic Thunks specification is included on the Win32 SDK CD in
\DOC\SDK\MISC\GENTHUNK.TXT. However, this document does not include
correct information for all of the function prototypes. The following
prototypes should be used:

 DWORD FAR PASCAL LoadLibraryEx32W(LPCSTR, DWORD, DWORD);
 DWORD FAR PASCAL GetProcAddress32W(DWORD, LPCSTR);
 DWORD FAR PASCAL CallProc32W(DWORD, LPVOID, DWORD, DWORD);
 DWORD FAR PASCAL GetVDMPointer32W(LPVOID, UINT);
 BOOL FAR PASCAL FreeLibrary32W(DWORD);

Note that although these functions are called in 16-bit code, they
need to be provided with 32-bit handles, and they return 32-bit
handles.

In addition, be sure that your DLL routines are declared with the
_stdcall convention; otherwise, you will get an access violation.

NOTE: It is a good idea to test the 32-bit DLL by calling it from a
32-bit application before attemting to call it from a 16-bit
application since the debugging support is superior in the 32-bit
environment.

MORE INFORMATION
================

The following code fragments can be used as a basis for Generic
Thunks. Assume that the Win16 application is named app16, that the
Win32 DLL is named dll32, and that the following are declared:

 typedef void (FAR PASCAL *MYPROC)(LPSTR);

 DWORD ghLib;
 MYPROC hProc;
 char FAR *TestString = "Hello there";

The DLL routine is defined in dll32.c as follows:

 void WINAPI myPrint(LPTSTR lpString)
 {
 MessageBox(GetFocus(), lpString, "dll32", MB_OK|MB_SYSTEMMODAL);
 }

Attempt to load the library in the app16 WinMain():

 if(NULL == (ghLib = LoadLibraryEx32W("dll32.dll", NULL, 0))) {
 MessageBox(NULL, "Cannot load DLL32", "App16", MB_OK);
 return 0;
 }

Attempt to get the address of myPrint():

 if(NULL == (hProc = (MYPROC)GetProcAddress32W(ghLib, "myPrint"))) {
 MessageBox(hWnd, "Cannot call DLL function", "App16", MB_OK);
 ...
 }

Call myPrint() and pass it TestString as an argument:

 CallProc32W((DWORD) TestString, hProc, 1, 1);

Free the library right before exiting WinMain():

 FreeLibrary32W(ghLib);

NOTE: When linking the Win16 application, you need to put the
following statements in the .DEF file, indicating that the functions
will be imported from the WOW kernel:

 IMPORTS
 kernel.LoadLibraryEx32W
 kernel.FreeLibrary32W
 kernel.GetProcAddress32W
 kernel.GetVDMPointer32W
 kernel.CallProc32W

Additional reference words: 3.10

INF: Dynamically Growing Named File Mappings
Article ID: Q104012
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

CreateFileMapping() can be used to create a named file mapping object,
which is generally used as shared memory between applications. This
call can use/grow an existing file on disk, use a temporary file it
first creates, or use part of the system pagefile.

Mapping a view of the file with MapViewOfFile() maps a range of
virtual memory addresses to the appropriate file. Anything that is
written to the pointer returned from MapViewOfFile() will be written
to the file on disk. All applications with views to this file mapping
object will see the same data. It is important to remember that you
cannot force the view beyond the end of the file mapping object.

If you have a named file mapping object that needs to be bigger, the
file can be grown by calling CreateFileMapping() a second time,
specifying a larger size than was specified the previous time. Be sure
to specify (as a first parameter) both a handle to the same file that
was specified originally and the same name. Otherwise, this file will
be grown to the size specified, but it will not be used as the file
mapping object. Note that the handle does not need to be closed to do
this.

The handle that you receive will be a handle to the original file
mapping object, although the handle itself will be different.

MORE INFORMATION
================

Be sure to check the return code to verify that a file mapping object
was created. If you have a handle, it is still a good idea to call
GetLastError(). If GetLastError() returns 0 (zero) when creating a
named object, this indicates that you have been given the single
handle to this file mapping object. If it returns
ERROR_ALREADY_EXISTS, then you have been given another handle to an
existing file mapping object. If this is intentional (perhaps you are
trying to grow the mapping as described above) and you specified the
correct handle in the first parameter of CreateFileMapping(), then you
can use the handle safely. If you did not intend to be using an
existing file mapping object, chances are that you will have problems.
In this case, release the handle just received by calling
CloseHandle(), and call specifying a new name for the file mapping
object.

Additional reference words: 3.10

INF: How Keyboard Data Gets Translated
Article ID: Q104316
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Keyboard input is acquired by the keyboard driver, which in turn
produces a scan code. This scan code is passed on to the
locale-specific Win32 subsystem keyboard driver. This locale-specific
driver then converts the scan code to a virtual key and a Unicode
character. The Win32 subsystem then passes on this information to the
application.

All messages in the Win32 application programming interface (API) that
present textual information to a window procedure depend upon how the
window registered its class. For instance, if RegisterClassW() was
called, then Unicode is presented; if RegisterClassA() was called,
then ANSI is presented. The conversion of the text is handled by the
Window Manager. This allows an ANSI application to send textual
information to a Unicode application.

Additional reference words: 3.10

INF: Monitoring a Log File for an Event
Article ID: Q105301
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

To receive notification when something is written to the log file, use
the following undocumented application programming interface (API):

 UINT ElfChangeNotify(LogHandle, Event)
 HANDLE LogHandle,
 HANDLE Event

NOTE: This article was written to temporarily help customers who need
this functionality. ElChangeNotify() will be replaced by an officially
documented API in the next revision of Windows NT.

This function will cause the Event to be signaled when an event has
been written to the log file identified by the LogHandle.

 LogHandle
 Handle to a log file obtained from a call to OpenEventLog().

 Event
 A handle to a Win32 event.

Note that you must link with ADVAPI32.LIB.

Most of the ELF (Event Logging Facility) functions already have Win32
wrappers. ElfChangeNotify() does not have such a wrapper at this time,
but will have a wrapper in the next release. At that time, it is
recommended that code that uses ElfChangeNotify() be rewritten to use
the new Win32 API, because ElfChangeNotify() may not be supported as
is in the future.

Additional reference words: 3.10 logfile

BUG: Redirecting Output to an MS-DOS Application
Article ID: Q105303

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The following method is used to redirect output to a child process
when it is started from a GUI application:

1. Declare STARTUPINFO si.

 a. Set the hStdIn, hStdOut, and/or hStdErr field as desired.
 b. Set the dwFlags field to STARTF_USESTDHANDLES.

2. In CreateProcess(), set inherit handles to TRUE.

NOTE: This method does not work when starting MS-DOS applications.

RESOLUTION
==========

As a workaround, use AllocConsole(), then the following method:

1. Use SetStdHandle() to set the desired handles to be inherited.

 -or-

 Use DuplicateHandle() to change the inheritance property of handles
 that should not be inherited.

3. In CreateProcess(), set inherit handles to TRUE.

This method creates a blank console window; however, this is necessary
because the method doesn't work otherwise.

STATUS
======

Microsoft has confirmed this problem to be a bug in Windows NT 3.1.

MORE INFORMATION
================

Note that if you are opening a handle that will be inherited by the
child, set SECURITY_ATTRIBUTES.bInheritHandle = TRUE in the call to
CreateFile(), CreatePipe(), and so forth.

For an example of both methods of redirection, see the INHERIT SDK

sample.

Additional reference words: 3.10

INF: SetErrorMode() Is Inherited
Article ID: Q105304
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

An application can use SetErrorMode() to control whether Windows
handles serious errors or whether the application itself will handle
the errors.

NOTE: The error mode will be inherited by any child process. However,
the child process may not be prepared to handle the error return
codes. As a result, the application may die during a critical error
without the usual error message popups occurring.

This behavior is by design.

One solution is to call SetErrorMode() before and after the call to
CreateProcess() in order to control the error mode that is passed to
the child. Be aware that this process must be synchronized in a
multithreaded application.

Additional reference words: 3.10

INF: Calling CRT Output Routines from a GUI Application
Article ID: Q105305
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

To use C run-time output routines, such as printf(), from a GUI
application, it is necessary to create a console. The Win32
application programming interface (API) AllocConsole() creates the
console. The CRT routine setvbuf() removes buffering so that output is
visible immediately.

This method works if the GUI application is run from the command line
or from File Manager. However, this method does not work if the
application is started from the Program Manager or via the "start"
command. The following code shows how to work around this problem:

 int hCrt;
 HFILE *hf;

 AllocConsole();
 hCrt = _open_osfhandle(
 (long) GetStdHandle(STD_OUTPUT_HANDLE),
 _O_TEXT
);
 hf = _fdopen(hCrt, "w");
 *stdout = *hf;
 i = setvbuf(stdout, NULL, _IONBF, 0);

This code opens up a new low-level CRT handle to the correct console
output handle, associates a new stream with that low-level handle, and
replaces stdout with that new stream. This process takes care of
functions that use stdout, such as printf(), puts(), and so forth. Use
the same procedure for stdin and stderr.

Note that this code does not correct problems with handles 0, 1, and
2. In fact, due to other complications, it is not possible to correct
this, and therefore it is necessary to use stream I/O instead of
low-level I/O.

MORE INFORMATION
================

When a GUI application is started with the "start" command, the three
standard OS handles STD_INPUT_HANDLE, STD_OUTPUT_HANDLE, and
STD_ERROR_HANDLE are all "zeroed out" by the console initialization
routines. These three handles are replaced by valid values when the
GUI application calls AllocConsole(). Therefore, once this is done,
calling GetStdHandle() will always return valid handle values. The

problem is that the CRT has already completed initialization before
your application gets a chance to call AllocConsole(); the three low
I/O handles 0, 1, and 2 have already been set up to use the original
zeroed out OS handles, so all CRT I/O is sent to invalid OS handles
and CRT output does not appear in the console. Use the workaround
described above to eliminate this problem.

In the case of starting the GUI application from the command line
without the "start" command, the standard OS handles are NOT correctly
zeroed out, but are incorrectly inherited from CMD.EXE. When the
application's CRT initializes, the three low I/O handles 0, 1, and 2
are initialized to use the three handle numbers that the application
inherits from CMD.EXE. When the application calls AllocConsole(), the
console initialization routines attempt to replace what the console
initialization believes to be invalid standard OS handle values with
valid handle values from the new console. By coincidence, because the
console initialization routines tend to give out the same three values
for the standard OS handles, the console initilization will replace the
standard OS handle values with the same values that were there
before--the ones inherited from CMD.EXE. Therefore, CRT I/O works in
this case.

It is important to realize that the ability to use CRT routines from a
GUI application run from the command line was not by design so this
may not work in future versions of Windows NT. In a future version,
you may need the workaround not just for applications started on the
command line with "start <application name>", but also for
applications started on the command line with "application name".

Additional reference words: 3.10

INF: Getting and Using a Handle to a Directory
Article ID: Q105306

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

CreateDirectory() can be used to open a new directory. An existing
directory can be opened by calling CreateFile(). To open an existing
directory with CreateFile(), it is necessary to specify the flag
FILE_FLAG_BACKUP_SEMANTICS. The following code shows how this can be
done:

 HANDLE hFile;

 hFile = CreateFile("c:\\mstools",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS,
 NULL
);
 if(hFile == INVALID_HANDLE_VALUE)
 MessageBox(NULL, "CreateFile() failed", NULL, MB_OK);

The handle obtained can be used to obtain information about the
directory or to set information about the directory. For example:

 BY_HANDLE_FILE_INFORMATION fiBuf;
 FILETIME ftBuf;
 SYSTEMTIME stBuf;
 char msg[40];

 GetFileInformationByHandle(hFile, &fiBuf);
 FileTimeToLocalFileTime(&fiBuf.ftLastWriteTime, &ftBuf);
 FileTimeToSystemTime(&ftBuf, &stBuf);
 wsprintf(msg, "Last write time is %d:%d %d/%d/%d",
 stBuf.wHour,stBuf.wMinute,stBuf.wMonth,stBuf.wDay,stBuf.wYear);
 MessageBox(NULL, msg, NULL, MB_OK);

Additional reference words: 3.10

INF: The Use of PAGE_WRITECOPY
Article ID: Q105532

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The documentation indicates that the PAGE_WRITECOPY protection gives
copy-on-write access to the committed region of pages. As it is,
PAGE_WRITECOPY makes sense only in the context of file mapping, where
you want to map something from the disk into your view and then modify
the view without causing the data to go on the disk.

The only case where VirtualAlloc() should succeed with PAGE_WRITECOPY
is the case where CreateFileMapping() is called with -1 and allocates
memory with the SEC_RESERVE flag and later on, VirtualAlloc() is used
to change this into MEM_COMMIT with a PAGE_WRITECOPY protection.

There is a bug in Windows NT 3.1 such that the following call to
VirtualAlloc() will succeed:

 lpCommit = VirtualAlloc(lpvAddr, cbSize, MEM_COMMIT, PAGE_WRITECOPY);

NOTE: lpvAddr is a pointer to memory that was allocated with
MEM_RESERVE and PAGE_NOACCESS.

One case where this might be useful is when emulating the UNIX fork
command. Emulating fork behavior would involve creating instance data
and using threads or multiple processes.

Additional reference words: 3.10

BUG: Problems with Local/Global Memory Management APIs
Article ID: Q105533

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The following is a list of problems that may be encountered when the
Local and Global memory management application programming interfaces
(APIs) are used:

1. The documentation for LocalUnlock() says that if the specified
 memory is fixed, the API returns nonzero.

 The API returns 0 (zero) even if the memory is fixed.

2. The documentation for LocalReAlloc() states that if the cbBytes
 parameter is 0, the memory is movable and discardable, and the lock
 count is zero, then the API returns a handle to a discarded memory
 object. If the lock count is nonzero, the API will fail.

 The API succeeds even if the lock count is nonzero.

3. The documentation for LocalFree() and for GlobalFree() indicates
 that if the parameter is NULL, the function will fail and the
 system generate an access violation.

 The APIs do not generate an access violation.

4. The documentation for LocalFree() and for GlobalFree() states that
 the API will fail if passed a handle to a memory object that is
 locked.

 The APIs free the memory even if the lock count is nonzero.

RESOLUTION/STATUS
=================

The following are confirmations of the corresponding problems
described in the previous section:

1. This is an error in the documentation. Memory that is already
 unlocked will cause LocalUnlock() to return FALSE and
 GetLastError() will report ERROR_NOT_LOCKED. Memory allocated with
 LMEM_FIXED always has a lock count of zero, and therefore
 GetLastError() will also return ERROR_NOT_LOCKED in this case.

2. This is a bug in Local/GlobalReAlloc().

3. This is an error in the documentation. The Help should state that
 Local/GlobalFree() will return NULL if an attempt is made to free
 NULL. This is compatible with Windows 3.1.

4. This is a bug in Local/GlobalFree().

Additional reference words: 3.10

BUG: AllocConsole() Does Not Set Error Code on Failure
Article ID: Q105564

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The documentation for AllocConsole() states the following:

 If the function succeeds, the return value is TRUE; otherwise, it
 is FALSE. To get extended error information, use the GetLastError()
 function.

Upon failure, AllocConsole() does not set the error code.

STATUS
======

Microsoft has confirmed this to be a bug in Windows NT 3.1.

MORE INFORMATION
================

The following sample code demonstrates the problem:

#include <stdio.h>
#include <windows.h>

void main()
{
 BOOL bSuccess;

/* Comment out the following line and GetLastError() will */
/* return 999; otherwise, GetLastError() returns 1812. */

 FreeConsole();

 SetLastError(999);

 bSuccess = AllocConsole();
 if(!bSuccess)
 puts("AllocConsole failed");
 printf("The last error is: %d\n", GetLastError());
 getchar();
}

Additional reference words: 3.10

INF: Critical Sections Versus Mutexes
Article ID: Q105678
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Critical sections and mutexes provide synchronization that is very
similar, except that critical sections can be used only by the threads
of a single process. There are two areas to consider when choosing
which method to use within a single process:

1. Speed. The Synchronization overview says the following about
 critical sections:

 ... critical section objects provide a slightly faster, more
 efficient mechanism for mutual-exclusion synchronization.

 Critical sections use a processor-specific test and set instruction
 to determine mutual exclusion.

2. Deadlock. The Synchronization overview says the following about
 mutexes:

 If a thread terminates without releasing its ownership of a
 mutex object, the mutex is considered to be abandoned. A waiting
 thread can acquire ownership of an abandoned mutex, but the wait
 function's return value indicates that the mutex is abandoned.

 WaitForSingleObject() will return WAIT_ABANDONED for a mutex that
 has been abandoned. However, the resource that the mutex is
 protecting is left in an unknown state.

 There is no way to tell whether a critical section has been
 abandoned.

Additional reference words: 3.10

PRB: GetPrivateProfileSection() Can Read Only 32K Sections
Article ID: Q105681

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The documentation for GetPrivateProfileSection() indicates that the
application programming interface (API) can read all the keys and
values of a section, regardless of size. However,
GetPrivateProfileSection() seems to handle only sections that are
smaller than 32K, even though the size of the buffer is a DWORD.

CAUSE
=====

The code is casting this value to a signed short, and therefore the
problems with sections that are greater than 32K in size.

STATUS
======

Microsoft has confirmed this to be a problem in Windows NT 3.1. We are
researching this problem and will post new information here as it
becomes available.

Additional reference words: 3.10

INF: Using NTFS Alternate Data Streams
Article ID: Q105763
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The documentation for the NTFS file system states that NTFS supports
multiple streams of data; however, the documentation does not address
the syntax for the streams themselves.

The Windows NT Resource Kit documents the stream syntax as follows:

 filename:stream

Alternate data streams are strictly a feature of the NTFS file system
and may not be supported in future file systems. However, NTFS will be
supported in future versions of Windows NT.

Future file systems will support a model based on Object Linking and
Embedding (OLE) version 2.0 structured storage (IStream and IStorage).
By using OLE 2.0, an application can support multiple streams on any
file system and all supported operating systems (Windows, Macintosh,
Windows NT, and Win32s), not just Windows NT.

MORE INFORMATION
================

The following sample code demonstrates NTFS streams:

#include <windows.h>
#include <stdio.h>

void main()
{
 HANDLE hFile, hStream;
 DWORD dwRet;

 hFile = CreateFile("testfile",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile\n");
 else
 WriteFile(hFile, "This is testfile", 16, &dwRet, NULL);

 hStream = CreateFile("testfile:stream",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hStream == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile:stream\n");
 else
 WriteFile(hStream, "This is testfile:stream", 23, &dwRet, NULL);
}

The file size obtained in a directory listing is 16, because you are
looking only at "testfile", and therefore

 type testfile

produces the following:

 This is testfile

However

 type testfile:stream

produces the following:

 The filename syntax is incorrect

In order to view what is in testfile:stream, use:

 more < testfile:stream

 -or-

 mep testfile:stream

Additional reference words: 3.10

INF: RegSaveKey() Requires SeBackupPrivilege
Article ID: Q106383

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The description for RegSaveKey() states the following:

 The caller of this function must possess the SeBackupPrivilege
 security privilege.

This means that the application must explicitly open a security token
and enable the SeBackupPrivilege. By granting a particular user the
right to back up files, you give that user the right only to gain
access to the security token (that is, the token is not automatically
created for the user but the right to create such a token is given).
You must add additional code to open the token and enable the
privilege.

The following code demonstrates how this can be done:

 static HANDLE hToken;
 static TOKEN_PRIVILEGES tp;
 static LUID luid;

 // Enable backup privilege.

 OpenProcessToken(GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken) ;
 LookupPrivilegeValue(NULL, "SeBackupPrivilege", &luid);
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 AdjustTokenPrivileges(hToken, FALSE, &tp,
 sizeof(TOKEN_PRIVILEGES), NULL, NULL);

 // Insert your code here to save the registry keys/subkeys.

 // Disable backup privilege.

 AdjustTokenPrivileges(hToken, TRUE, &tp,
 sizeof(TOKEN_PRIVILEGES), NULL, NULL);

MORE INFORMATION
================

Note that you cannot create a process token; you must open the
existing process token and adjust its privileges.

The DDEML Clock sample has similar code sample at the end of the
CLOCK.C file where it obtains the SeSystemTimePrivilege so that it can
set the system time.

Additional reference words: 3.10

INF: Identifying a Previous Instance of an Application
Article ID: Q106385
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The entry point of both Windows and Windows NT applications is
documented to be:

 int WinMain(hInstance, hPrevInstance, lpszCmdLine, nCmdShow)

 HINSTANCE hInstance; /* Handle of current instance */
 HINSTANCE hPrevInstance; /* Handle of previous instance */
 LPSTR lpszCmdLine; /* Address of command line */
 int nCmdShow; /* Show state of window */

However, under Windows NT, hPrevInstance is documented to always be
NULL. The reason is that each application runs in its own address
space and may have the same ID as another application.

To determine whether another instance of the application is running,
use a named mutex. If opening the mutex fails, then there are no other
instances of the application running. FindWindow() can be used with
the class and window name. However, note that a second instance of the
application could be started, and could execute the FindWindow() call
before the first instance has created its window. Use a named object
to ensure that this does not happen.

MORE INFORMATION
================

The fact that hPrevInstance is set to NULL simplifies porting Win16
applications. Most Win16 applications contain the following logic:

 if(!hPrevInstance)
 if(!InitApplication(hInstance))
 return FALSE;

Under Windows, window classes only are registered by the first
instance of an application. Consequently, if hPrevInstance is not
NULL, then the window classes have already been registered and
InitApplication() is not called.

Under Windows NT, because hPrevInstance is always NULL,
InitApplication() is always called, and each instance of an
application will correctly register its window classes.

Additional reference words: 3.10

Sample: Saving/Loading Bitmaps in .DIB Format on MIPS
Article ID: Q85844

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 In Win32, saving or loading a bitmap in .DIB file format is
 basically the same as in Win16. However, care must be taken in
 DWORD alignment, especially on the MIPS platform.

 An exception occurs when loading or saving a bitmap on the MIPS
 platform. In NTSD, the following error message is received:

 data mis-alignment

CAUSE
 A non-DWORD aligned actual parameter was passed to a function such
 as GetDIBits().

 The .DIB file format contains the BITMAPFILEHEADER followed
 immediately by the BITMAPINFOHEADER. Notice that the
 BITMAPFILEHEADER is not DWORD aligned. Thus, the structure that
 follows it, the BITMAPINFOHEADER, is not on a DWORD boundary. If a
 pointer to this DWORD misaligned structure is passed to the sixth
 argument of GetDIBits(), an exception will occur.

RESOLUTION
 To resolve this problem, copy the data in the structure over to a
 DWORD-aligned memory and pass the pointer to the latter structure
 to the function instead. See the sample code LOADBMP.C for detail.

More Information:

The is a sample to illustrates this process. Refer to the LOADBMP.C
file in the MANDEL sample.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: World Coordinate Transform
Article ID: Q81721

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SDK sample named WXFORM provides a demonstration of the
new world-coordinate transformation. This sample displays a
rectangle in world coordinates and a matrix containing the
transform values. Users can directly manipulate the
rectangle and see the effect on the transformation, or they
can set the transformation and see the effect on the
rectangle.

More Information:

The program begins by setting the viewport origin to the
center of the client area. It then draws a rectangle in
world coordinate space from the point (0, 0) to the point
(100, 100). The user can directly manipulate this rectangle
by using the left and right mouse buttons. Specific actions
are described more fully in the "Direct Manipulation Help"
dialog box.

There is a second dialog box titled "World Transform." This
shows the values of the eM11, eM12, eM21, eM22, eDx, and eDy
fields in the XFORM structure retrieved by calling the
GetWorldTransform function. By choosing the buttons on this
dialog box, the user can cause a SetWorldTransform to occur
in the program.

There are three coordinate systems of interest in this
sample. The first one is the world coordinate system, which
is new to Win32. These points are ultimately mapped to the
second coordinate system, device coordinates, before being
painted in the window. This program must also use a third
coordinate system, screen coordinates, for certain
interactions with the mouse pointer.

There is a third dialog box titled "Mouse Position" that
shows the location of the cursor in all three of these
coordinate systems. The device coordinates are relative to
the upper-left corner of the client area. They are not
relative to the viewport origin.

Additional reference words: ModifyWorldTransform

Sample: AngleArc Demonstration Program
Article ID: Q81724

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample named ANGLE provides a demonstration of how the
new AngleArc API function works. The X, Y, and RADIUS
parameters are all in the world coordinate space. The start
angle and sweep angle are floating-point values and are
interpreted as degrees.

More Information:

This program presents a dialog box stretched across the top
of the window. The user can set the parameters for the
AngleArc API function by changing the values in the entry
fields of this dialog box. A button on the dialog box then
allows the user to immediately see the results of these
values on the arc in the client area. If the values in the
entry field are invalid, the program will write out this
information and not draw the arc. The origin of the viewport
is shifted down in the client area so that it exists at the
upper-left corner of the viewable area.

Sample: Using GetDIBits() for Retrieving Bitmap Information
Article ID: Q85846

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When saving a bitmap in .DIB file format, the GDI function is used to
retrieve the bitmap information. The general use of this function and
the techniques for saving a bitmap in .DIB format are largely
unchanged; however, this article provides more details on the use of
the Win32 API version of the GetDIBits() function. MANDEL is a sample
program that illustrates the information in this article.

More Information:

The function can be used to retrieve the following information:

 - Data in the BitmapInfoHeader (no color table and no bits)

 - Data in the BitmapInfoHeader and the color table (no bits)

 - All the data (BitmapInfoHeader, color table, and the bits)

The fifth and the sixth parameters of the function are used to tell
the graphics engine exactly what the application wants it to return.
If the fifth parameter is NULL, then no bits will be returned. If the
biBitCount is 0 (zero) in the sixth parameter, then no color table
will be returned. In addition, the biSize field of the
BitmapInfoHeader must be set to either the size of BitmapInfoHeader or
BitmapCoreHeader for the function to work properly.

Refer to the SAVEBMP.C file in the MANDEL sample for details.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: Demonstration of Using System Info API
Article ID: Q81849

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GETSYS SDK sample is a dialog box that provides the user with an easy
way to see the results of the following API functions:

 GetSysColors()
 GetSystemDirectory()
 GetSystemInfo()
 GetSystemMetrics()
 GetSystemPaletteEntries()
 GetSystemTime()

Sample: StretchBlt Demonstration
Article ID: Q81850

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The STREBLT sample is an easy to use demonstration of the
StretchBlt API function. The program presents a dialog box
on the top of the window, and through this dialog box the
user can manipulate the parameters to StretchBlt. In the
main window, the source bitmap is displayed on the right
half of the window, and the destination bitmap is displayed
on the left half.

More Information:

The source and destination rectangles may be changed
directly in the dialog, or they may be changed by using the
direct manipulation objects in the two halves of the window.
Clicking and dragging the mouse in the upper-left corner
moves the rectangles; clicking and dragging the mouse in the
lower-right corner sizes the rectangles. The source direct
manipulation object is temporarily erased before calling
StretchBlt so that the top and left edges do not show in the
destination image.

The raster operation for the StretchBlt call may be changed
by altering the values in the right-most entry fields. The
contents are interpreted to be in hexadecimal. There is a
combo box directly beneath these entry fields that lists all
of the standard raster operations. If the user selects a
standard ROP from this combo box, its contents are copied
into the ROP entry fields and are then used in the
StretchBlt call.

Several of the raster operations make use of a pattern in
the destination HDC. For this reason, the program also
allows the user to select one of the standard pattern
brushes from a second combo box. This brush is selected into
the destination HDC just prior to making the StretchBlt
call.

The effect of the StretchBlt call is also affected by the
"StretchBlt mode" that has been set for the destination HDC.
A third combo box allows the user to select from any of the
standard modes. The difference is most easily observed when
stretching from a large source rectangle to a small
destination rectangle.

The "Draw" button may be chosen at any time to cause the
StretchBlt call to be made. This does not erase the
background, so that the effect of multiple ROPs on the HDC
can be observed. Manipulating the source rectangle also
causes a StretchBlt to occur without erasing the window.
However, manipulating the destination rectangle erases the
destination half of the window before the next StretchBlt is
called.

Sample: Using Region-Related API Functions
Article ID: Q81874

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The REGIONS sample demonstrates various region-related API
functions, and allows a user to create rectangular,
elliptic, and multi-polygon regions. In addition, hit-
testing a region and combining regions using the different
region-combination modes is demonstrated.

More Information:

When the program has started, create a region by choosing
one of the items in the Create submenu. At this point, items
in the Options submenu will be enabled, and hit-testing,
inversion, and other actions can be performed on the region.

When a second region is created, items in the Combine
submenu will be enabled. Choosing one of these items causes
CombineRgn to be called with the specified combine mode, and
the two regions are merged into one.

It is possible to create up to three regions at a time.
Items in the Options submenu always apply to the most
recently created (or combined) region. The Erase item
deletes all existing regions. Items in the Combine submenu
always apply to the two most recently created (or combined)
regions.

Additional reference words:

PtInRegion, CreateEllipticRgn, GetRgnBox, CreatePolygonRgn,
CreateRectRgn, SetRectRgn, OffsetRgn, FillRgn, FrameRgn

Sample: PlgBlt Demonstration
Article ID: Q81875

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 offers a new API function that will copy a bit image
onto an arbitrary parallelogram. Now, for the first time,
application programs can trivially rotate or shear bitmaps.
The PLGBLT SDK sample is an easy to use demonstration of how
this new API function may be used.

More Information:

The program presents a dialog box on top of the window that
displays the input parameters to the PlgBlt function. By
choosing the "New Src" or "New Mask" button, the user can
select a new bitmap for use as the source bitmap or as the
monochrome mask bitmap. The client area of the window is
divided into three regions. The region on the left contains
the result of the PlgBlt operation. The region in the middle
provides the source HDC, and the region on the right
provides the mask bitmap for the PlgBlt operation.

In each of the three regions, there is a "direct
manipulation object." This object may be picked up and moved
by clicking the left mouse button in the top-left corner and
dragging. The three objects are restricted in their response
to user actions to correctly reflect the parameters to the
PlgBlt function. The object in the mask region may be moved
only. The object in the source region may be moved or sized.
The object in the destination region may be moved, sized,
sheared, or rotated. Please see the WXFORM sample for more
information on how this direct manipulation is accomplished.
Additional information on the WXFORM sample may be obtained
by querying on the word WXFORM in this knowledge base.

SAMPLE: Using Graphic Paths Demonstration
Article ID: Q81876

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The PATHS sample demonstrates the use of paths for drawing, filling,
and clipping. The program draws six different figures in the window
and labels each one. Each figure is based on the same path re-created
six times. The six figures are the result of calling the following
Windows functions (with the poly fill mode in parentheses):

 StrokePath()
 FillPath()
 StrokeAndFill()(Winding)
 StrokeAndFill()(Alternate)
 SelectClipPath()(Winding)
 SelectClipPath()(Alternate)

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Additional reference words: 3.10

SAMPLE: PolyBezier() Demonstration
Article ID: Q81877

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The BEZIER sample provides an easy to use demonstration of how the
PolyBezier() function works. The user can place points in the window
with the left mouse button. The user can also move these points by
dragging with the same mouse button. The PolyBezier() curve is drawn
dynamically to follow the position of the new points.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

In order to use this program, press the left mouse button at
miscellaneous places in the client area. A Polyline() call shows
exactly where the points were put. When there are 4, 7, 10, ...,
(3n+1) points on the screen, the PolyBezier() curve is drawn with
these as control points. The API itself does not draw anything if
there are some other number of points. The whole client area may be
erased by pressing the right mouse button.

Additional reference words: 3.10

Sample: GetDeviceCaps() Demonstration Program
Article ID: Q83930

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GETDEV sample is a dialog box that displays the result
of the GetDeviceCaps call with all of the possible input
parameters. Six of the numeric results (TECHNOLOGY,
LINECAPS, POLYGONALCAPS, TEXTCAPS, CLIPCAPS, and RASTERCAPS)
are expanded to show the constant string from WINGDI.H.

Sample: PolyDraw Function Demonstration
Article ID: Q83931

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The POLYDRAW sample provides an easy-to-use
demonstration of how the PolyDraw Win32 API function works.
The user can place points in the window with the left mouse
button, and move these points by dragging with the same
mouse button. The PolyDraw curve is drawn dynamically to
follow the position of the new points.

More Information:

To use this program, click the left mouse button at
miscellaneous places in the client area. A Polyline call
shows exactly where the points were put. By default, the
type entered into the type array is PT_LINETO. This can be
changed to a PT_MOVETO type by holding down the SHIFT key.
It can be changed to a PT_BEZIERTO type by holding down the
CTRL key. The resulting purple curve shows the results.
There will be no curve when the bezier points do not come in
groups of 4, 7, ... , (3n+1).

INF: Use 16-Bit .FON Files for Cross-Platform Compatibility
Article ID: Q100487

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The AddFontResource() function installs a font resource in the GDI
font table. Under Windows NT, the module can be a .FON file or a .FNT
file. Under Windows 3.1, the module must be a .FON file. When using
Win32s, AddFontResource() passes its argument to the Win16
AddFontResource, and therefore .FON files should be used for
portability.

In addition, when running under Windows NT, the module can be either a
32-bit "portable executable" or a 16-bit .FON file. However, if the
same Win32 executable is run under Win32s, the call to
AddFontResource() fails if the *.FON is not in 16-bit format.
Therefore, for compatibility across platforms, use 16-bit *.FON files.
These can be created using the Windows 3.1 Software Development Kit
(SDK).

Additional reference words: 3.10

Sample: MaskBlt Function Demonstration
Article ID: Q84541

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MASKBLT sample is an easy-to-use demonstration of the
MaskBlt Win32 API function. The program presents a dialog
box on the top of the window; through this dialog box the
user can manipulate the parameters to MaskBlt. In the main
window, the source bitmap is displayed in the center third
of the window, the monochrome bitmap mask is displayed in
the right third of the window, and the destination bitmap is
displayed on the left.

More Information:

The destination rectangle may be changed directly in the
dialog box, or it may be changed by using the direct
manipulation object in the left third of the window.
Clicking and dragging the mouse in the upper-left corner
moves the rectangle; clicking and dragging the mouse in the
lower-right corner sizes the rectangle. The function
requires only a starting point (not a rectangle) for the
source and mask bitmaps. There is one additional direct
manipulation object for the source and one for the mask.
These objects may be moved by clicking and dragging with the
mouse.

The raster operation for the MaskBlt call may be changed by
altering the values in the right most entry fields. The
contents are interpreted to be in hexadecimal. There is a
combo box directly beneath these entry fields that lists all
of the standard raster operations. If the user selects a
standard ROP from this combo box, its contents are copied
into the ROP entry fields and are then used in the MaskBlt
call.

This sample provides clipboard support in the following manner.
Hitting <ctrl>+<insert> will copy the destination image into the
clipboard. Hitting <shift>+<insert> will copy a bitmap from the
clipboard into the source region. Hitting <alt>+<insert> will
do both; the destination image will be copied into the clipboard
and then down to the source region.

INF: Device Contexts: Using Across Threads
Article ID: Q94236

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A window created with the CS_OWNDC style retains its device context (DC)
attributes across GetDC() calls.

However, the DC attributes are not retained if the GetDC() calls are called
from different threads. This is by design because DCs are thread-based. In
the Win32 user interface, if the calling thread is not the owner of the
window, then GetDC() returns a cache DC instead of the owned DC handle.

To save attributes across threads, one must create a routine to initialize
DC attributes, which is then called from threads not owning the given
window.

Additional reference words: 3.10 3.1

INF: Transparent Blts in Windows NT
Article ID: Q89375

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In order to perform a transparent blt in Microsoft Windows versions
3.0 and 3.1, the BitBlt() function must be called two or more times.
This process involves nine steps. (For more information on this
process, see article Q79212 in the Microsoft Knowledge Base.)

Windows NT introduces a new method of achieving transparent blts. This
method involves the use of the MaskBlt() function. The MaskBlt()
function lets you use any two arbitrary ROP3 codes (say, SRCCOPY and
BLACKNESS) and apply them on a pel-by-pel basis using a mask.

More Information:

For this example, the source and target bitmaps contain 4 BPP. The call
to the MaskBlt() function is as follows:

 MaskBlt(hdcTrg, // handle of target DC
 0, // x coord, upper-left corner of target rectangle
 0, // y coord, upper-left corner of target rectangle
 15, // width of source and target rectangles
 15, // height of source and target rectangles
 hdcSrc, // handle of source DC
 0, // x coord, upper-left corner of source rectangle
 0, // y coord, upper-left corner of source rectangle
 hbmMask, // handle of monochrome bit-mask
 0, // x coord, upper-left corner of mask rectangle
 0, // y coord, upper-left corner of mask rectangle
 0xAACC0020 // raster-operation (ROP) code
);

The legend is as follows

 '.' = 0,
 '@' = 1,
 '+' = 2,
 '*' = 3,
 '#' = 15

Source Bitmap Mask Bitmap Target Bitmap Result
--

++++++*** @....... ############### #######*#######
++++++*** @@@...... ############### ######***######
++++++*** @@@@@..... ##...........## ##...+***+...##

+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
++++++*** @@@@@@@@@@@@@@@ ##...........## ***+++***+++***
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
++++++*** @@@@@..... ##...........## ##...+***+...##
++++++*** @@@...... ############### ######***######
++++++*** @....... ############### #######*#######

Note that the ROP "AA" is applied where 0 bits are in the mask and the
ROP "CC" is applied where 1 bit is in the mask. This a transparency.

When creating a ROP4, you can use the following macro:

 #define ROP4(fore,back) ((((back) << 8) & 0xFF000000) | (fore))

This macro can be used to call the MaskBlt() function as follows:

 MaskBlt(hdcDest, xTrgt, yTrgt,
 cx, cy,
 hdcSrc, xSrc, ySrc,
 hbmMask, xMask, yMask,
 ROP4(PATCOPY, NOTSRCCOPY)
);

This call would draw the selected brush where 1 bit appears in the mask
and bitwise negation of the source bitmap where 0 bits appear in the
mask.

Additional reference words: 3.10 pixel

INF: 16 and 32 Bits-Per-Pel Bitmap Formats
Article ID: Q94326

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 supports the same bitmap formats as Microsoft Windows version 3.1,
but includes two new formats: 16 and 32 bits-per-pel.

For DIBs (device independent bitmaps), the 16- and 32-bit formats contain
three DWORD masks in the bmiColors member of the BITMAPINFO structure (the
color table), instead of the array of RGBQUAD structures for 1-, 4-, and
8-bit formats). These masks specify which bits in the pel correspond to
which color.

The three masks must have contiguous bits, and their order is assumed to be
R, G, B (high bits to low bits). The order of the three masks in the color
table must also be first red, then green, then blue (RGB). In this manner,
the programmer can specify a mask indicating how many shades of each RGB
color will be available for bitmaps created with CreateDIBitmap().

For 16-bit bitmaps, CreateBitmap() defaults to the 5+5+5 format. The
formats 6+5+5 and 6+6+4 are also supported by this method.

Example

The 5-5-5 format masks are:

 0x00007C00 red (0000 0000 0000 0000 0111 1100 0000 0000)
 0x000003E0 green (0000 0000 0000 0000 0000 0011 1110 0000)
 0x0000001F blue (0000 0000 0000 0000 0000 0000 0001 1111)

For 16 bits-per-pel, the upper half of the DWORDs are always zeroed.

Usage

When using 16- and 32-bit formats, there are also certain fields of the
BITMAPINFOHEADER structure that must be set to the correct values:

1. The biCompression member must be set to BI_BITFIELDS, or the DIB API
 will fail. This indicates that there are bit fields in the bitmap rather
 than encoded color indexes (as in 4- or 8-bit formats).

2. The biClrUsed member must be set to 3 (or 0, which means use the maximum
 number of color table entries for that format, which for 16 and 32 bits-
 per-pel is 3). The member names are a bit misleading in these cases,
 because the "color table" (the bmiColors entry of the BITMAPINFO

 structure) is not being used to store a list of colors, but 3 bit masks.

A technical note related to this subject from the Microsoft Multimedia
group is also available. It can be obtained from CompuServe in the WINEXT
and WINSDK forums. The filename is VFW.ZIP. In addition, the technote is
available by calling Microsoft Developer Services at (800) 227-4679,
extension 11771. The technical note is part of the Video for Windows
technical notes and describes how to create a display driver that supports
these new DIB formats, which are used by Video for Windows. The technical
note also includes definitions of installable image codecs.

Additional reference words: 3.10 technote

INF: PSTR's in OUTLINETEXTMETRIC Structure
Article ID: Q90085

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The OUTLINETEXTMETRIC structure ends with four fields of type PSTR. The
four fields in question are not actually absolute pointers. They are
offsets from the beginning of the OUTLINETEXTMETRIC structure to the
strings in question, as the documentation indicates:

 otmpFamilyName
 Specifies the offset from the beginning of the structure to a
 string specifying the family name for the font.

 otmpFaceName
 Specifies the offset from the beginning of the structure to a
 string specifying the face name for the font. (This face name
 corresponds to the name specified in the LOGFONT structure.)

 otmpStyleName
 Specifies the offset from the beginning of the structure to a
 string specifying the style name for the font.

 otmpFullName
 Specifies the offset from the beginning of the structure to a
 string specifying the full name for the font. This name is
 unique for the font and often contains a version number or
 other identifying information.

The only difference between this structure in Windows 3.1 and Windows NT is
that the strings may be stored in either Unicode or ASCII under NT.

Additional reference words: 3.10

INF: Advantages of Device-Dependent Bitmaps
Article ID: Q94918

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A DDB (device-dependent bitmap) is much faster than a DIB (device
independent-bitmap) to BitBlt(). For this reason, it is often a good
strategy under Win32 (as well as under Windows 3.1) to create a DDB from a
DIB when caching or calling *Blt() functions.

The slight drawback of memory overhead for the DDB is handled well by
Win32. Under Windows 3.1, the DDB memory could be marked as discardable.
Under Win32, the memory will be paged out if system resources become tight
(at least until the next repaint); if the memory is marked as
PAGE_READONLY, it can be efficiently reused, [see VirtualProtect() in the
Win32 application programming interface (API) Help file].

However, saving the DDB to disk as a mechanism for transfer to other
applications or for later display (another invocation) is not recommended.
This is because DDBs are driver and driver version dependent. DDBs do not
have header information, which is needed for proper translation if passed
to another driver or, potentially, to a later version of the driver for the
same card.

Additional reference words: 3.10 3.1 win3.1

INF: Set/ModifyWorldTransform() Requires SetGraphicsMode()
Article ID: Q94922

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SetWorldTransform() and ModifyWorldTransform() fail if GM_ADVANCED
mode is not previously set by calling SetGraphicsMode().

Likewise, if the graphics mode in the device context (DC) is set to
GM_ADVANCED and the world transform is set to anything but the identity
transform, the DC cannot be reset to the default mode (GM_COMPATIBLE)
unless the world transform is first reset to the identity transform.

Thus, applications involving SetWorldTransform() or ModifyWorldTranform()
should be changed so that SetGraphicsMode(hdc,GM_ADVANCED) is called first.

Additional reference words: 3.10 3.1

PRB: IsGdiObject() Is Not a Part of the Win32 API
Article ID: Q91072

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 There doesn't seem to be an IsGdiObject() function in Win32 in either
 the API reference or the header files.

CAUSE
 The function was added to the Windows 3.1 API because passing a handle
 to a non-GDI object to a GDI function causes a GP fault under Windows
 3.0. Win32 on Windows NT detects whether the APIs are passed an
 inappropriate handle, and the function returns an error.

RESOLUTION
 IsGdiObject() is not needed for Win32 on Windows NT.

Additional reference words: 3.10 3.1 3.00 3.0

INF: Use of DocumentProperties() vs. ExtDeviceMode()
Article ID: Q92514

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Windows applications have used ExtDeviceMode() to retrieve or modify device
initialization information for printer drivers. The Win32 API introduces a
new function DocumentProperties() that applications can use to configure
the settings of the printer.

Note that ExtDeviceMode() calls DocumentProperties(); therefore, it is
faster for applications to use DocumentProperties() directly.

Specifying the DM_UPDATE mask allows an application to change printer
settings when using DocumentProperties(). Applications should be aware
that the GetProcAddress() function is now case sensitive.

Windows 3.x applications running on Windows NT (WOW) can call
ExtDeviceMode(). The spooler's ExtDeviceMode() entry is intended for WOW
use.

Additional reference words: 3.00 3.0 3.10 3.1

INF: Font-Related APIs & Structures Removed from Win32/NT
Article ID: Q93465

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following font-related APIs, structures, constants, and typedefs are
being removed from Win32/NT. They are being removed due to schedule
constraints and because they do not extend well to systems with large
numbers of fonts installed. Additional design work will be done and a
better solution provided in a future release.

APIs:

 EnumNearestFont()
 SetFontMapperControls()
 GetFontMapperControls()

 AddFontModule()
 RemoveFontModule()

Structures:

 tagFMPENALTYSET
 tagFMWEIGHTSET
 tagFMATCH
 tagFMCONTROLS

Constants:

 FMATCH_EXACT
 FMATCH_NEAR
 FMATCH_FAR
 FMATCH_ERROR
 PANOSE_RANGE
 FM_LOCATION_GDI
 MAPPER_INDEX_TERMINATE
 MAPPER_INDEX_HEIGHT
 MAPPER_INDEX_WIDTH
 MAPPER_INDEX_ESCAPEMENT
 MAPPER_INDEX_ORIENTATION
 MAPPER_INDEX_WEIGHT
 MAPPER_INDEX_ITALIC
 MAPPER_INDEX_UNDERLINE
 MAPPER_INDEX_STRIKEOUT
 MAPPER_INDEX_CHARSET
 MAPPER_INDEX_OUTPRECISION
 MAPPER_INDEX_CLIPPRECISION
 MAPPER_INDEX_QUALITY

 MAPPER_INDEX_PITCHANDFAMILY
 MAPPER_INDEX_FACENAME
 MAPPER_INDEX_FULLNAME
 MAPPER_INDEX_STYLE
 MAPPER_INDEX_PANOSE
 MAPPER_INDEX_VENDORID
 MAPPER_INDEX_ASPECT
 MAPPER_INDEX_LOCATION
 MAPPER_INDEX_LAST
 SIZEOFMAPORDER
 SIZEOFFMCONTROLS

Typedefs:

 FMORDER

Additional reference words: 3.10

INF: DEVMODE and dmSpecVersion
Article ID: Q96282
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The dmSpecVersion field of the DEVMODE structure is intended for
printer driver use only; no application programs should test this
field. The purpose of this field is for new printer drivers to be able
to recognize and handle DEVMODE structures created according to
previous DEVMODE structure specification.

The DEVMODE structure is used for printer and (occasionally) display
drivers when initializing. This structure is tied to the driver--not
the operating system. The dmSpecVersion field does not allow an
application to determine which platform (Windows version 3.1, Windows
on Windows, Win32) the application is running in.

When an application fills a DEVMODE structure, it should set the
dmSpecVersion field to DM_SPECVERSION. This identifies the version of
the DEVMODE structure the application is generating.

If the application is querying to understand an unknown device, then
special attention should be paid to the dmFields, dmSize, and
dmDriverExtra fields. These fields are a reliable means of
understanding what fields in the DEVMODE structure are readable.

More Information:

The DEVMODE structure consists of public and private parts. The
dmSpecVersion field applies to the public part. Any previously defined
fields are not altered when the DEVMODE specification is updated--more
fields are merely added to the end of the structure. This can mean
fields used in the previous specification are ignored in a later
specification. This functionality is managed by one bitfield
describing what fields a driver actually uses. The new drivers just
switch off the obsolete fields.

Applications using DEVMODE should always use the dmSize and
dmDriverExtra fields for allocating/storing/manipulating the
structure. These fields define the sizes of the public and private
parts of the structure, respectively.

Additional reference words: 3.10 3.1 WOW

INF: Tracking Brush Origins in Windows NT
Article ID: Q102353

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

When programming for Windows NT, it is no longer necessary to keep
track of brush origins yourself. GDI32 keeps track of the brush
origins by automatically recognizing when the origin has been changed.
In Windows, you have to explicitly tell GDI to recognize the change by
calling UnrealizeObject() with a handle to the brush. When a handle to
a brush is passed to UnrealizeObject() in Windows NT, the function
does nothing.

In Windows 3.1, the default brush origin is the screen origin. In
Windows NT, the default origin is the client origin.

Additional reference words: 3.10

INF: Calculating the TrueType Checksum
Article ID: Q102354

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

To calculate a TrueType checksum:

1. Sum all the ULONGS in the .TTF file, except the checkSumAdjust
 field (which contains the calculated checksum). Note that TrueType
 files are big-endian, while Windows and Windows NT are little-endian,
 so the bytes must be swapped before they are summed.

2. Subtract the result from the magic number 0xb1b0afba.

Example

1. Open the SYMBOL.TTF distributed with Windows NT. It is 64492 bytes
 long.

2. Step through the 16123 ULONGS, summing each one, except for the
 checkSumAdjust field for the file (which in this case is
 0xa7a81151).

3. Subtract the result from 0xb1b0afba. The result is 0xa7a81151.

The TrueType font file specification is available from several
sources, including the Microsoft Software/Data Library (query on the
word TTSPEC1).

Additional reference words: 3.10

INF: Creating a Font for Use with the Console
Article ID: Q105299
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

It is possible to use FontEdit to create a font that can be used by
the console. The following must be true:

 - The face name must be System, Terminal, or Courier
 - The font size must be different from any of the other console fonts
 - The font must be fixed pitch
 - The font must not be italic

In addition, in the U.S. market, the font should support codepage 437.

Install the font from the Control Panel. After rebooting, the font
will be available to the console.

An EnumFonts() call is made by the console during its initialization
to determine what fonts are available. The console saves a set of
one-to-one mappings between the font sizes listed and a set of
LOGFONTs. The console never has direct knowledge of what file is used.

Additional reference words: 3.10

INF: Creating a Logical Font with a Nonzero lfOrientation
Article ID: Q104010
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

To create a font that writes in a direction other than left to right,
an application should specify a nonzero lfEscapement in the LOGFONT
structure that is passed to CreateFontIndirect(). This method works
under Windows NT regardless of the graphics mode of the device
context.

To create a font where the characters themselves are rotated, the
application should specify a nonzero lfOrientation in the LOGFONT
structure that is passed to CreateFontIndirect(). However, this
setting is ignored in Windows NT unless the graphics mode is set to
GM_ADVANCED.

Therefore, to successfully create a logical font with a nonzero
lfOrientation, use

 SetGraphicsMode(hDC, GM_ADVANCED)

to set the graphics mode of the device context to GM_ADVANCED.

MORE INFORMATION
================

The TTFONTS sample program is a good way to quickly and easily see the
effects of the lfEscapement and lfOrientation fields. However, TTFONTS
does not set the graphics mode of its test window HDC to GM_ADVANCED.
As a result, the lfOrientation field apparently is ignored. It is
easy to modify the DISPLAY.C module of TTFONTS in order to set the
graphics mode of the window HDC to GM_ADVANCED.

Additional reference words: 3.10

INF: Windows Socket API Specification Version 1.1
Article ID: Q85965

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Windows Sockets API Specification version 1.1 is now available in
two formats. WINSOCK.DOC is a Word for Windows, version 2.0, document
and WINSOCK.TXT is an ASCII-text-format document.

These files contain the Windows Sockets API Specification version 1.1,
which defines a standard binary interface for tcp/ip transports based
on the Berkeley Sockets interface originally in Berkeley UNIX with
Windows-specific extensions. This specification has been endorsed by
20 leading companies, and defines the sockets interface in Windows NT.
The specification will be supported by various vendors in their
upcoming tcp/ip product releases for Windows for MS-DOS.

The Windows Sockets API Specification version 1.1 can be found in the
Software/Data Library by searching on the words WINSOCK (ASCII text)
or WINSOCKW (Word for Windows), the Q number of this article, or
S13474 for WINSOCK or S13475 for WINSOCKW. WINSOCK and WINSOCKW were
archived using the PKware file-compression utility.

Additional reference words: 1.00 2.00 1.10

INF: Writing a Telnet Client
Article ID: Q95866
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Windows NT provides a Telnet client service, which allows developers
to easily write applications that connect with hosts that have a
Telnet daemon process running.

To use the Telnet client service, the workstation must have the TCP/IP
protocol installed properly. To start the Telnet service, type

 net start telnet

at a command shell prompt, or use the Services application in the
Control Panel to start the Telnet service.

The interface to the Telnet service is through the Win32
communications APIs (application programming interfaces). Instead of
opening "COM1:" or "COM2:", the special device name TELNET is opened.
Handling the device is the same as handling a standard communications
port (some functionalities are not supported, such as setting baud
rates, DCB settings, and so forth).

For an example of how to use the Telnet client service, see the TTY
sample in the Win32 Software Development Kit (SDK) under the
\MSTOOLS\SAMPLES\TTY subdirectory.

More Information:

Before connecting to a remote host, the IP address of both the
remote host and the local host must be entered properly in the
hosts file, located in the \%SYSTEMROOT%\SYSTEM32\DRIVERS\ETC
subdirectory.

Additional reference words: TTY TCPIP

INF: Supported Versions of Windows Sockets
Article ID: Q101377

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

When using the WSAStartup() Windows Sockets application programming
interface (API)

 int PASCAL WSAStartup (WORD wVersionRequired, LPWSADATA lpWSAData);

the first parameter specifies the version of Windows Sockets the
application requires.

The 16-bit Windows Sockets dynamic-link library (DLL) for NT
(WINSOCK.DLL) supports versions 1.0 and 1.1.

The 32-bit Windows Sockets DLL for NT (WSOCK32.DLL) supports only
version 1.1. Specifying version 1.0 in the call to WSAStartup()
results in a return of WSAVERNOTSUPPORTED.

The Win32s WSOCK32.DLL thunks down to the 16-bit WINSOCK.DLL, if it is
installed.

Additional reference words: 1.00 1.10 3.10

INF: Using RPC Callback Functions
Article ID: Q96781
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The standard remote procedure call (RPC) model has a server containing
one or more exported function calls, and a client, which calls the
server's exported functions. However, Microsoft's implementation of
RPC defines callbacks as a special interface definition language (IDL)
attribute allowing a server to call a client function.

Callbacks can be used only in the context of a server call. Thus, a
server may call a client's callback function only when the server is
performing a client's remote procedure call (before it returns from
processing). For example:

 CLIENT SERVER
 ------ ------

 Client makes RPC call. -->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server returns from original RPC call.

More Information:

Callbacks are declared in the RPC .IDL file and defined in the source
of the client. The following demonstrates how callbacks are declared
and defined:

[SAMPLE.IDL]
[
 uuid(9FEE4F51-0396-101A-AE4F-08002B2D0065),
 version(1.0),
 pointer_default(unique)
]

{
 void RPCProc([in, string] unsigned char *pszStr);
 [callback] void CallbackProc([in,string] unsigned char *pszStr);
}

[SAMPLEC.C (Client)]
/*
Callback RPC call (initiated from server, executed on client).
*/
void CallbackProc(unsigned char *pszString)

{
 printf("Call from server, printed on client: %s", pszStr);
}

[SAMPLES.C (Server)]
/*
"Standard" RPC call (initiated from client, executed on server).
Makes a call to client callback procedure, CallbackProc().
*/
void RPCProc(unsigned char *pszStr)
{
 printf("About to call Callback() client function.."
 CallbackProc(pszStr);
 printf("Called callback function.");
}

In the makefile for the sample, the "-ms_ext" switch must be used for
the MIDL compile. For example:

 midl -ms_ext -cpp_cmd $(cc) -cpp_opt "-E" sample.idl

Additional reference words: 3.10

PRB: RPC Installation Problem
Article ID: Q104315
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

There is a problem with the Remote Procedure Call (RPC) service
installation. Setup searches the Windows directory for WINSOCK.DLL. If
the file is found, Setup installs RPC16C3.DLL.

This is a problem if you are dual booting a machine between Windows
3.1 and Windows NT because Windows 3.1 uses an older TCP/IP interface,
which is called RPC16C3X.DLL on the distribution disks. When you run
Windows NT, you will want to use the newer TCP/IP interface, called
RPC16C3.DLL.

WORKAROUND
==========

If you are dual booting and using RPC, a workaround to this problem is
to rename your WINSOCK.DLL file to something else, such as
WINSOCK.XXX. This will cause Setup to copy the correct version of the
TCP/IP dynamic-link library (DLL).

Additional reference words: 3.10

PRB: AttachThreadInput() Resets Keyboard State
Article ID: Q100486

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOMS

Start with a program that calls AttachThreadInput() to a thread in
another process. Call GetKeyboardState() to get the current key. Call
SetKeyboardState() to set the keystate. This call returns TRUE,
indicating success, but the keystate is not successfully set.

If the thread is in the same process, calling SetKeyboardState() works
as expected.

CAUSE

When attaching to another thread, a temporary message queue is
created. This queue contains a copy of the keystate information from
the queue to which you are attaching. When the keystate is set, the
temporary queue keystate is updated and the application programming
interface (API) succeeds. However, when the detach occurs, the
keystate change information is lost and reverts to what it was before
the attach.

RESOLUTION

To work around the problem, either:

 - Stay attached

 -or-

 - Use hooks

STATUS

This problem will not be resolved in the release of Windows NT version
3.1; however, a resolution is being considered for a future release.

Additional reference words: 3.10

INF: Global Classes in Win32
Article ID: Q80382

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under 16-bit Windows (Win16), when an application wants to check
whether or not a window class has been previously registered in the
system, it typically checks hPrevInstance. Under Win32,
hPreviousInstance always returns FALSE. Thus, the window class will be
reregistered by all .EXEs using the DLL that contains the window
class, unless the check for hPrevInstance is called from a process
that is spawned by the process that first registered the class.

More Information:

A class is registered for a process context only. A class definition
is not available outside the process context of the process that
originally registered it.

Although an application can enumerate windows and retrieve the class
name of a class registered in another process, they will not be able
to use that class within their process.

Sample: Common Dialog DLL
Article ID: Q81703

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A sample demonstrating the use of all of the common dialog
box functions in the Win32 API is now available.

More Information:

Each dialog box is demonstrated being used in three
different ways: standard, using a hook function, and using a
modified template.

Additional reference words:

ChooseColor, ChooseFont, GetOpenFileName, GetSaveFileName

SAMPLE: Standard DLL & Ex. of Creating a Custom Control Class
Article ID: Q81852
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The SPINCUBE sample provides a generic Windows NT dynamic link library
(DLL) template demonstrating the use of DLL entry points, exported
variables, using C run time in a DLL, and so forth.

This sample also provides a functional example of how to create a
custom control class that may be used by applications (for exampl,
SPINTEST.EXE) as well the Dialog Editor.

MORE INFORMATION
================

SPINCUBE.DLL contains the control window procedure and the interface
functions required by the Dialog Editor (see SPINCUBE.C), as well as
the control paint routines (see PAINT.C). SPINTEST.EXE is a small test
program that loads SPINCUBE.DLL and creates a few of the custom
controls.

To test SPINCUBE with the Dialog Editor:

1. Start the editor. From the File menu, choose Open Custom.

2. Enter the path and filename of SPINCUBE.DLL.

3. Create a new dialog box and choose a custom control button from the
 control palette (lower-right corner).

4. Click the dialog box to create a SPINCUBE control.

5. Save the dialog box template.

6. Inspect the .DLG file that was created.

Additional reference words: 3.10

INF: DDEML Application-Instance IDs Are Thread Local
Article ID: Q94091

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When using the DDEML (Dynamic Data Exchange Management Library) libraries
from a spawned thread, the application-instance ID that is returned in the
lpidInst parameter of DdeInitialize is thread local.

Therefore, the application-instance ID cannot be used by any other thread
that is spawned by the process, nor can it be inherited from the parent.

To use the DDEML libraries within a thread, it is necessary to make both
the DdeInitialize call and to use the DdeUninitialize call from within the
thread; otherwise, there is no way to terminate the DDEML session.

Additional reference words: 3.10 3.1

SAMPLE: WM_COMMNOTIFY Message is Obsolete
Article ID: Q94561

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under Windows version 3.1, the WM_COMMNOTIFY message is posted by a
communication device driver whenever a COM port event occurs. The message
indicates the status of a window's input or output queue.

This message is currently not supported under Windows NT. By release,
however, the WOW layer will support the EnableCommNotification()
function.

To duplicate the Windows 3.1 functionality under Windows NT, refer to
the TTY sample, included with the SDK. The TTY sample is a common code
base sample, which uses the EnableCommNotification() API under Windows
3.1 to tell COMM.DRV to post messages to the TTY window.

Under NT, this behavior is simulated with a secondary thread by using
WaitCommEvent() and PostMessage().

TTY.C defines WM_COMMNOTIFY if WIN32 is defined. Using this method,
WM_COMMNOTIFY notifications are simulated but use the same message
definition as Windows 3.1.

The TTY sample is located on the Win32 SDK CD in
\MSTOOLS\SAMPLES\COMM.

Additional reference words: 3.10 win 3.1 win3.1

Sample: SUBCLASS Program Demonstration
Article ID: Q84242

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SUBCLASS sample demonstrates how a program can subclass
standard controls in order to extend their normal
functionality. This sample replaces the window procedure for
buttons, edit fields, and list boxes.

More Information:

The standard subclassing technique is to replace the window
procedure in the window structure by using:

 SetWindowLong (hwnd, GWL_WNDPROC, (LONG) SubclassWndProc);

In the SUBCLASS sample, the old window procedure is also
saved in a structure pointed at by the user data. Thus, any
functionality can be added to various classes of windows
without having to know what the class originally was.

In this sample, the subclass procedure adds the ability to
move and size the control windows when the application is
not in "test mode." When the application is in test mode,
the subclass procedure calls the original window procedure
and the controls behave as normal. Thus, this sample
provides the bare bones for a "dialog editor" type of
program.

Additional reference words: CallWindowProc GWL_USERDATA

Sample: Communications API Function Demonstration
Article ID: Q87331

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The COMM SDK sample application is designed to demonstrate the basics
of using the Win32 communications API functions while maintaining a
common code base with Win16 code.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

The COMM program performs communications using the Windows functions
OpenFile(), ReadFile(), SetCommState(), SetCommMask(), WaitCommEvent(),
WriteFile(), and CloseFile().

This sample creates a background thread to watch for COMM receiver
events and posts a notification message to the main terminal window.
Foreground character processing is written to the communications port.

Simple TTY character translation is performed and a screen buffer is
implemented for use as the I/O window.

Overlapped file I/O techniques are demonstrated.

How to Use

The baud rate, data bits, stop bits, parity, port, RTS/CTS
handshaking, DTR/DSR handshaking, and XON/XOFF handshaking can be
changed under the Settings menu item.

Once the communications settings are set up, the Action menu item can
be selected to connect or disconnect the TTY program.

INF: Freeing PackDDElParam() Memory
Article ID: Q94149

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When posting DDE messages via PostMessage(), an application first calls
PackDDElParam() and sends its return value (a pointer cast to LPARAM) as
the lParam in PostMessage().

Normally the receiving application is responsible for freeing the structure
[via FreeDDElParam()]. However, if the call to PostMessage() fails, the
posting application must free the packed data. This is also the method used
by 16-bit Windows

Additional reference words: 3.10

INF: System Versus User Locale Identifiers
Article ID: Q100488

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

In Windows NT version 3.1, the following pairs of application
programming interfaces (APIs) have the same functionality:

 GetSystemDefaultLCID() and GetUserDefaultLCID()
 GetSystemDefaultLangID() and GetUserDefaultLangID()

The user LangID and LCID are always set to the system value. In future
versions of Windows NT, it will be possible to set the LangID and the
LCID on a per-user basis.

Note that it is possible to set the LCID on a per-thread basis [that
is, SetThreadLocale()] in Windows NT 3.1.

Additional reference words: 3.10

INF: Multiline Edit Control Limits in Windows NT
Article ID: Q89712

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The default maximum size for a multiline edit (MLE) control in both Windows
and Windows NT is 30,000 characters. The EM_LIMITTEXT message allows an
application to increase this value. Setting "cchmax" to 0 is a portable
method of increasing this limit to the maximum in both 16-bit and 32-bit
Windows. When cchmax is set to 0, the maximum size for an MLE is 4GB-1
(4 gigabytes minus 1).

Additional reference words: 3.10 3.1 win16 win32

INF: Use of DLGINCLUDE in Resource Files
Article ID: Q91697

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Windows 3.1 SDK dialog editor needs a way to know what include file is
associated with a resource file that it opens. Rather than prompt the user
for the name of the include file, the name of the include file is embedded
in the resource file in most cases.

Embedding the name of the include file is done with a resource of type
RCDATA with the special name DLGINCLUDE. This resource is placed into the
.RES file and contains the name of the include file. The dialog editor
looks for this resource when it loads a .RES file. If this resource is
found, then the include file is opened also; if not, the editor prompts the
user for the name of the include file.

In some Windows 3.1 build environments, the dialog editor was used to
create dialogs that were placed in more than one .DLG file. These different
.DLG files were then included in one .RC file, which was compiled with the
resource compiler. Therefore, the resource file gets multiple copies of a
RCDATA type resource with the same name, DLGINCLUDE, but the resource
compiler and dialog editor don't complain.

In the Win32 SDK, changes were made so that this resource has its own
resource type; it was changed from an RCDATA-type resource with the
special name, DLGINCLUDE, to a DLGINCLUDE resource type whose name can
be specified. The dialog editor would look for resources of the type
DLGINCLUDE.

Changes were made to CvtRes so that it gives an error if it finds a
resource that has the same type, name, and language as another
resource in the file. We are being more strict about the need for
resources to be unique in the Win32 SDK than the Windows 3.1 SDK. This
is good because there was never any guarantee at run time as to which
of the two or more resources would be returned by LoadResource().

This means that some applications being ported to Windows NT give an error
when their resources are compiled because they have duplicate RCDATA type
resources with the same name (DLGINCLUDE). This error is by design. The
workaround is straightforward: delete all the DLGINCLUDE RCDATA type
resource statements from all the .DLG files.

Finally, because it does not make sense to have the DLGINCLUDE type
resources in the executable, CvtRes will strip them out so that they don't
get linked into the EXE.

Additional reference words: 3.10 3.1

INF: Multiple Desktops Under Windows NT
Article ID: Q92505

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 does not support sharing the same desktop between two monitors on the
same machine. An independent software vendor (ISV) that wants this
capability must write a display device driver that behaves similar to a
normal driver with a single monitor, but actually controls two monitors.

Additional reference words: 3.10 3.1

INF: Clarification of COMMPROP Max?xQueue Members
Article ID: Q94950

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In the COMMPROP structure, the dwMaxTxQueue and dwMaxRxQueue members state
"a value of 0 means that this field is not used" in their descriptions.

This statement means that the provider does not restrict you to maximum Rx
and Tx queue values, and these members [returned by GetCommProperties()]
should not be used to determine the size of your transmit and receive
buffers when calling SetupComm().

Based on the memory present in the system, NT's serial driver
determines a default Rx queue size (currently 128 bytes on low memory
systems and 4K on high memory systems). The current Rx and Tx queue
sizes are located in the dwCurrentTxQueue and dwCurrentRxQueue
members.

SetupComm() allows you to change these default queue sizes. However, you
should not assume that the given serial driver will allocate any memory.
The queue size allocated is stored in the dwCurrentRxQueue member of the
COMMPROP structure. You may use this information to set the XonLim and
XoffLim members of the device control block (DCB) structure.

The Microsoft-supplied serial driver attempts to allocate at least the
amount requested for the RXQUEUE and, failing this, the request will also
fail. The driver never attempts to allocate memory for the TXQUEUE.

Additional reference words: 3.10 3.1

INF: OpenComm() and Related Flags Obsolete Under Win32
Article ID: Q94990
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

OpenComm(), a Windows 3.1 application programming interface (API), is
obsolete under Win32 and is not in the Win32 API. Also, the flags
IE_BADID, IE_BAUDRATE, IE_BYTESIZE, IE_DEFAULT, IE_HARDWARE,
IE_MEMORY, IE_NOPEN, and IE_OPEN are obsolete, but are still in the
header files. However, these flags will be removed from the retail
release.

These flags and the OpenComm() API do exist for Win16 applications
running under Windows on Windows (WOW).

Under Win32, CreateFile() is used to create a handle to a
communications resource (for example, COM1). The fdwShareMode
parameter must be 0 (exclusive access), the fdwCreate parameter must
be OPEN_EXISTING, and the hTemplate parameter must be NULL. Read,
write, or read/write access can be specified, and the handle can be
opened for overlapped I/O.

The standard I/O API ReadFile() and WriteFile() are used for
communciations I/O. The TTY sample program shipped with the Win32
Software Development Kit (SDK) demonstrates how to do serial I/O under
Win32.

Additional reference words: 3.10 3.1

INF: Window Message Priorities
Article ID: Q96006
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

With Win32, messages have the same priorities as with Windows 3.1.

With normal usage of GetMessage() (passing zeros for all arguments
except the LPMSG parameter) or PeekMessage(), any message on the
application queue is processed before user input messages. And input
messages are processed before WM_TIMER and WM_PAINT "messages."

For example, PostMessage() puts a message in the application queue.
However, when the user moves the mouse or presses a key, these
messages are placed on another queue (the system queue in Windows 3.1;
a private, per-thread input queue in Win32).

GetMessage() and its siblings never look at the user input queue until
the application queue is empty. Also, the WM_TIMER and WM_PAINT
messages are not handled until there are no other messages (for the
thread) to process. The WM_TIMER and WM_PAINT messages can be thought
of as boolean toggles, because multiple WM_PAINT or WM_TIMER messages
waiting in the queue will be combined into one message. This reduces
the number of times a window must repaint itself.

Under this scheme, prioritization can be considered tri-level. All
posted messages are higher priority than user input messages because
they reside in different queues. And all user input messages are
higher priority than WM_PAINT and WM_TIMER messages.

The only difference in the Win32 model from the Windows versions 3.x
model is that there is effectively a system queue per thread (for user
input messages) rather than one global system queue. The
prioritization scheme for messages is identical.

More Information:

For information concerning SendMessage() from one thread to another,
query on the following words in the Microsoft Knowledge Base:

 Win32 and SendMessage() and overview

Additional reference words: 3.10

INF: Distinguishing Between Keyboard ENTER and Keypad ENTER
Article ID: Q96242
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

It is possible using ReadConsoleInput() or PeekConsole() to
distinguish between the ENTER key on the main keyboard and the ENTER
key on the numeric keypad. The KEY_EVENT_RECORD structure in the
INPUT_RECORD structure must be used to distinguish between the two
keys.

The following illustrates what the KEY_EVENT_RECORD structure is
filled with after a keyboard ENTER key versus a numeric keypad ENTER
key is pressed.

Keyboard ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000000

Numeric Keypad ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000100

In the case of the numeric keypad ENTER key, in dwControlKeyState,
ENHANCED_KEY bit is set.

Additional reference words: 3.10

PRB: Setting Hooks Locally or Globally
Article ID: Q97919
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The application programming interface (API) SetWindowsHookEx() allows
the developer to control whether hooks get set globally or locally. As
with Windows version 3.1, the API SetWindowsHook() is used for local
hooks only. The documentation does not make this distinction clear.

Additional reference words: 3.10

INF: NULL is a Valid Return From SetWindowsHook()
Article ID: Q97920
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

NULL may be returned as a valid handle from a call to
SetWindowsHook(). NULL will be returned when installing the first hook
of a particular hook type (with the exception of the HK_KEYBOARD and
HK_MESSAGE hook types). This behavior is compatible with Windows
version 3.1.

GetLastError() returns something useful only when an error is returned
from an API. Because there is no way to tell if this API failed,
GetLastError() will not return a meaningful value.

The SetWindowsHook() API returns NULL when you try to set a
WH_MSGFILTER, WH_MOUSE, or WH_DEBUG hook with it. GetLastError()
returns 0x57 "invalid parameter". However, the hook procedure does get
called normally and the hook is successfully set.

Additional reference words: 3.10

INF: LB_GETCARETINDEX Returns 0 for Zero Entries in List Box
Article ID: Q97922
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

To determine whether a multiple selection list box is empty or has no
items to select, two messages are required. First, call LB_GETCOUNT to
determine whether or not the list box is empty. If the list box is not
empty, then use LB_GETCARETINDEX to determine the position of the
caret.

If you want a list box to contain selections that remain after the
focus goes elsewhere, Microsoft recommends using visible check marks
next to the items in the list box. This method provides better visual
feedback to the user than a selection bar.

Additional reference words: 3.10 listbox

INF: SetActiveWindow() and SetForegroundWindow() Clarification
Article ID: Q97925
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

By default, each thread has an independent input state (its own active
window, its own focus window, and so forth). SetActiveWindow() always
logically sets a thread's active window state. To force a window to
the foreground, however, use SetForegroundWindow().
SetForegroundWindow() activates a window and forces the window into
the foreground. SetActiveWindow() always activates, but it brings the
active window into the foreground only if the thread is the foreground
thread.

Applications can call AttachThreadInput() to allow a set of threads to
share the same input state. By sharing input state, the threads share
their concept of the active window. By doing this, one thread can
always activate another thread's window. This application programming
interface (API) is also useful for sharing focus state, mouse capture
state, keyboard state, and window Z-order state among windows created
by different threads whose input state is shared.

Additional reference words: 3.10

INF: Possible Serial Baud Rates on Various Machines
Article ID: Q99026
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

Computers running Windows NT may be unable to set the same serial baud
rates due to differences in serial port hardware on various platforms
and machines. These differences may be important to note when writing
a serial communications application that runs on different Windows NT
platforms.

The simplest way to determine what baud rates are available on a
particular serial port is to call the GetCommProperties() application
programming interface (API) and examine the COMMPROP.dwSettableBaud
bitmask to determine what baud rates are supported on that serial
port.

More Information:

Some baud rates may be available on one machine and not on another
because of differences in the serial port hardware used on the two
machines. Most Intel 80x86 machines use a standard 1.8432 megahertz
(MHz) clock speed on serial port hardware, and therefore most Intel
machines can set the same baud rates. However, on other platforms,
such as MIPS, there is no standard serial port clock speed. MIPS
serial ports are known to exist with 1.8432 MHz, 3.072 MHz, 4.2336
MHz, and 8.0 MHz serial port clock chips. Future NT implementations on
other platforms may have different serial port clock speeds as well.

Furthermore, certain requested baud rates are special-cased in the
Windows NT serial driver so that they will work. The following are
these special cases:

 MHz Requested Baud Divisor Resulting Baud Rate (+/- 1)

 1.8432 56000 2 57600
 3.072 14400 13 14769
 4.2336 9600 28 9450
 4.2336 14400 18 14700
 4.2336 19200 14 18900
 4.2336 38400 7 37800
 4.2336 56000 5 52920
 8.0 14400 35 14286
 8.0 56000 9 55556

The actual baud rate can be calculated by dividing the divisor
multiplied by 16 into the clock rate. For example, for a 1.8432 MHz
clock and a divisor of 2, the baud rate would be:

 1843200 Hz / (2 * 16) = 57600

For all other cases, as long as the requested baud rate is within 1
percent of the nearest baud rate that can be found with an integer
divisor, the baud rate request will succeed.

Additional reference words: 3.10 3.1

INF: Memory Handles and Icons
Article ID: Q99360
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

Memory handles are not globally sharable among processes. Handles for
icons, cursors, windows, and so forth, are not global handles but are
handles into an index into the server-side handle table (the handle is
actually an index into the server-side's handle table). Thus, some
objects can be shared between processes (but probably shouldn't be,
for concurrency reasons).

GDI-related objects, however, are stored in a client-side handle
table, which is translated to a handle value in a server-side table on
every client-server transition. Thus, there are some objects that can
be shared (USER-related objects) and some that can't be shared
(BASE/KERNEL and GDI).

There are three types of handles in the system:

 - Handles to objects that the executive (object manager) knows
 about. These are assigned on a per-process basis but each access to
 these objects goes through the executive.

 - Handles that are maintained by the Win32 subsystem server (USER
 objects, including icons and cursors) and are therefore sharable.
 Please note that the allowed behavior of shared USER objects is
 subject to change in future releases of Windows NT. Thus, care
 should be taken when using these handles.

 - Handles that are maintained by the Win32 subsystem client, and
 therefore are valid only in the context of the process that created
 it (GDI objects). These handles differ from the first type of
 handles listed in that you cannot call handle manipulation
 functions, such as DuplicateHandle() an WaitForSingleObject(), or
 use the security facilities on these objects.

Additional reference words: 3.10

INF: Debugging a System-Wide Hook
Article ID: Q102428
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Debugging a system-wide hook such as a journal hook must be done with
the extreme caution. When an application installs such a hook, it
effectively takes control of user input. In effect, this disables the
interface with the debugger. For example, after installing a journal
record hook, you must unhook the record hook when you want to allow
the debugger to regain control.

It is not possible to use an interactive debugger to debug an actively
installed journal hook using a single machine. It is possible to use a
remote debugger, because one interface can be blocked (or recording)
while the other one does the debugging.

More Information:

System-wide input hook procedures can be thought of as being in three
possible states:

 unhooked (not installed)
 suspended
 hooked (installed)

In the unhooked state, the procedure imposes no control over user
input. In the hooked state, all user input specifically defined to be
handled by this hook passes through this procedure. In the suspended
state, all user input specifically defined to be handled by this hook
is completely blocked.

In the case of a journal record hook, the suspended state can be
achieved when a breakpoint is reached within the hook procedure. When
this happens, all user input (system wide, that is) in the form of
mouse and keyboard input is blocked, and thus you cannot interact with
the debugger or any other application as you normally would.
Fortunately, when the user presses the CTRL+ESC or the CTRL+ALT+DEL
key combinations, all system-wide hooks are automatically unhooked,
returning the system to the unhooked state.

Once this has occurred, it is likely that the application with the
journal hook is now in a undefined state (because it had the hook
pulled out from underneath it, so to speak). Fortunately, the system
will send all applications the WM_CANCELJOURNAL message to indicate
that it has removed the hook. A well behaved application can intercept
this message and adjust its state accordingly.

Additional reference words: 3.10

INF: WM_ENTERIDLE Documentation Is Misleading
Article ID: Q102446

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The Win32 application programming interface (API) online documentation
for the WM_ENTERIDLE message states the following:

 The WM_ENTERIDLE message informs an application's main window
 procedure that a modal dialog box or menu is entering an idle
 state.

This is incorrect for dialog boxes. The WM_ENTERIDLE message is sent
to the dialog box's owner window rather than the application's main
window as the documentation states.

Microsoft has confirmed this to be a problem in the Windows NT SDK
version 3.1.

A modal dialog box or menu enters an idle state when no messages are
waiting in its queue after it has processed one or more previous
messages.

Additional reference words: 3.10

INF: How to Make SPINCUBE a Global Class
Article ID: Q102483

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The spincube class (from the SDK sample SPINCUBE) in SPINCUBE.DLL can
be made a global class that is initialized at logon time. To do this,
put the dynamic-link library (DLL) name (full path) in the registry
(the DLL registers its classes via DLL_PROCESS_ATTACH) under the
section:

 HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\Windows
 APPINIT_DLLS

Once you add this key and log on again, any application in the system
can use this global class.

Additional reference words: 3.10

INF: The SBS_SIZEBOX Style
Article ID: Q102485

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

A size box is a small rectangle the user can expand to change the size
of the window. When you want a size box, you create a SCROLLBAR window
with the SBS_SIZEBOX flag. This action creates a size box with the
height, width, and position that you specified in the call to
CreateWindow. If you specify SBS_SIZEBOXBOTTOMRIGHTALIGN, the box will
be aligned in the lower right of the rectangle you specified when
creating the window. If you specify SBS_SIZEBOXTOPLEFTALIGN, the box
will be aligned in the upper left of the rectangle you specified in
your call to CreateWindow().

MORE INFORMATION
================

The user moves the mouse pointer over to the box, presses and holds
the left mouse button, and drags the mouse pointer to resize the
window. When the user does this, the borders on the window (the frame)
move. When the user releases the mouse button, the window is resized.

You create a size box by creating a child window of type WS_CHILD |
WS_VISIBLE | SBS_SIZEBOX | SBS_SIZEBOXTOPLEFTALIGN. You don't have to
do any of the processing for this; the system will take care of it.
You will notice in your window procedure that you will get the scroll
bar messages plus the WM_MINMAXINFO message. Size boxes work similar
to the way the WS_THICKFRAME/WS_SIZEBOX style does on a window.

Additional reference words: sizebox scrollbar

SAMPLE: Control Panel Application Sample
Article ID: Q102486
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

A sample demonstrating the creation of a Control Panel application is
now available.

The CPlApplet function is for a dynamic-link library (DLL) containing
three Control Panel applications that set preferences for a component
stereo system attached to the computer. The sample uses an
application-defined StereoApplets array that contains three
structures, each corresponding to one of the Control Panel
applications. Each structure contains all the information required by
the CPL_NEWINQUIRE message, as well as the dialog box template and
dialog box procedure required by the CPL_DBLCLK message. The code
demonstrates how to fill the structures in the StereoApplets array.

To install your new DLL, copy the .CPL file into your SYSTEM32
directory and the Control Panel will automatically load the DLL upon
startup.

Additional reference words: 3.10

INF: Clarification of the
Article ID: Q102765
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Under Windows NT, the "Country" choice affects currency, date/time and
number format, and so forth. The "Language" choice affects sorting,
names of the days of the weeks and months, and so forth. These
settings allow the user to choose the appropriate language and country
format. For example, if you are British and living in the U.S., you
can pick a locale of English (British) at setup time, then use Control
Panel later to change your country to U.S. so that currency is in
dollars instead of pounds.

Additional reference words: 3.10

PRB: CloseClipboard() Suggests Calling DuplicateHandle()
Article ID: Q103240

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SYMPTOMS
========

The documentation for CloseClipboard() suggests using
DuplicateHandle() on a clipboard object before closing the clipboard,
in order to use that object after the clipboard is closed. Doing so
results in a return of ERROR_INVALID_HANDLE.

CAUSE
=====

The documentation is in error. DuplicateHandle() is specified to work
only on console input, console output, events, files, file mappings,
mutexes, pipes, processes, semaphores, and thread handles.

Additional reference words: 3.10

INF: Differences Between hInstance on Win 3.1 and Windows NT
Article ID: Q103644
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

In Microsoft Windows version 3.1, an instance handle can be used to
uniquely identify the instance of an application because instance
handles are unique within the scope of an address space. Because each
instance of an application runs in its own address space on Windows
NT, instance handles cannot be used to uniquely identify an instance
of an application running on the system. This article explains why,
and some alternative calls that might assist in uniquely identifying
an application instance on Windows NT.

MORE INFORMATION
================

Although the concepts for an instance handle are similar on Windows NT
and Windows 3.1, the results you see regarding them might be very
different from what you expect.

With Windows 3.1, when you start several instances of the same
application, they all share the same address space. You have multiple
instances of the same code segment; however, each of these instances
has a unique data segment associated with it. Using an instance handle
(hInstance) is a way to uniquely identify these different instances
and data segments in the address space.

Instance handles are unique to the address space. On Windows NT, when
looking at the value of the instance handle, or the value returned
from GetWindowLong(hWnd, GWL_HINSTANCE), a developer coming from a
Windows 3.1 background might be surprised to see that most of the
windows on the desktop return the same value. This is because the
return value is the hInstance for the instance of the application,
which is running it its own address space. (An interesting side note:
The hInstance value is the base address where the application's module
was able to load; either the default address or the fixed up address.)

In Win32 on Windows NT, running several instances of the same
application causes the instances to start and run in their own
separate address space. To emphasize the difference: multiple
instances of the same application on Windows 3.1 run in the same
address space; in Windows NT, each instance has its own, separate
address space. Using an instance handle to uniquely identify an
application instance, as is possible on Windows 3.1, does not apply in
Windows NT. (Another interesting side note: Remember that even if
there are multiple instances of an application, if they are able to
load at their default virtual address spaces, the virtual address

pages of the different applications' executable code will map to the
same physical memory pages.)

In Windows NT, instance handles are not unique in the global scope of
the system; however, window handles, thread IDs, and process IDs are.
Here are some calls that may assist in alternative methods to uniquely
identify instance of applications on Windows NT:

 - GetWindowThreadProcessID() retrieves the identifier of the thread
 that created the given window and, optionally, the identifier of
 the process that created the window.

 - OpenProcess() returns a handle to a process specified by a process
 ID.

 - GetCurrentProcessID() returns the calling process's ID.

 - EnumThreadWindows() returns all of the windows associated with a
 thread.

 - The FindWindow() function retrieves the handle of the top-level
 window specified by class name and window name.

 - To enumerate all of the processes on the system, you can query the
 Registry using RegQueryValueEx() with key HKEY_PERFORMANCE_DATA,
 and the Registry database index associated with the database string
 "Process".

For further details on using these calls, please see the Win32 SDK
Help files.

Additional reference words: 3.00 3.10

INF: Propagating Environment Variables to the System
Article ID: Q104011

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

User environment variables can be modified using the System
application or by editing the following Registry key:

 HKEY_CURRENT_USER \
 Environment

System environment variables can be modified by editing the following
Registry key:

 HKEY_LOCAL_MACHINE \
 SYSTEM \
 CurrentControlSet \
 Control \
 Session Manager \
 Environment

Note, however, that modifications to the environment variables do not
result in immediate change. For example, if you start another Command
Prompt after making the changes, the environment variables will
reflect the previous (not the current) values. The changes do not take
effect until you log off and then log back on.

To effect these changes without having to log off, broadcast a
WM_WININICHANGE message to all windows in the system, so that any
interested applications (such as Program Manager, Task Manager,
Control Panel, and so forth) can perform an update.

MORE INFORMATION
================

For example, the following code fragment should propagate the changes
to the environment variables used in the Command Prompt:

 SendMessage(FindWindow("Progman", NULL), WM_WININICHANGE,
 0L, (LPARAM) "Environment");

Additional reference words: 3.10

INF: 32-Bit Scroll Ranges
Article ID: Q104311
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

You can use 32-bit scroll ranges by calling GetScrollPos(); however,
you cannot get 32-bit positions for notifications sent while thumb
tracking, that is, via the SB_THUMBPOSITION message. This is because
thumb position information is not queryable via an application
programming interface (API). You only can obtain the 32-bit scroll
information only before or after the scroll has taken place.

The scroll bar APIs allow setting a scroll range up to 0x7FFFFFFF via
SetScrollRange(), and setting a scroll position within that range
using SetScrollPos(). If the WM_HSCROLL or WM_VSCROLL message is
processed, the information returned for scroll bar position, nPos, is
only a 16-bit value. To obtain the 32-bit information, the
GetScrollPos() API must be used.

Additional reference words: 3.10 scrollbar

INF: COMCTL32 APIs Unsupported in the Win32 SDK
Article ID: Q105300

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The library COMCTL32.LIB was included in the Win32 SDK because the
PERFMON sample makes use of it. The library is part of the Windows for
Workgroups (WFW) COMMCTRL.LIB. However, Microsoft does not officially
support COMCTL32.LIB or recommend the use of these application
programming interfaces (APIs), and therefore they have not been
documented in the SDK.

Microsoft does not recommend these APIs because most of the interfaces
will change in future versions of Windows and Windows NT. Therefore,
Microsoft will not be supporting COMCTL32.

If you must absolutely use COMCTL32 at this time, the documentation
can be found in the WFW SDK. Be aware that the code that you write
will break in future operating systems.

Additional reference words: 3.10

INF: Cancelling WaitCommEvent() with SetCommMask()
Article ID: Q105302

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

If a serial port is in nonoverlapped mode (without
FILE_FLAG_OVERLAPPED) and SetCommMask() is called, the call does not
return until any pending WaitCommEvent() calls return. This apparently
contradicts the following statement from the SetCommMask() Help

 If SetCommMask() is called for a communications resource while a wait
 is pending for that resource, WaitCommEvent() returns an error.

and the following statement from the WaitCommEvent() Help:

 If a process attempts to change the device handle's event mask by
 using the SetCommMask() function while a WaitCommEvent() operation
 is in progress, WaitCommEvent() returns immediately.

However, this is the expected behavior. If you open a serial port in
the nonoverlapped mode, then you can do only one thing at a time with
the serial port. SetCommMask() must block while the WaitCommEvent()
call is blocking.

If the serial port was opened with FILE_FLAG_OVERLAPPED,
WaitCommEvent() will return after SetCommEvent() has been called.

Additional reference words: 3.10 com1 com2

INF: Win32 Shell Dynamic Data Exchange (DDE) Interface
Article ID: Q105446
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

Information on the DDE Interface to Program Manager can be found in
the Win32 application programming interface (API) reference under the
topic "Shell Dynamic Data Exchange Interface."

The SDK contains a sample program that interfaces with Program
Manager. The sample can be found in MSTOOLS\SAMPLES\DDEML\DDEPROG.

MORE INFORMATION
================

AppProperties cannot be used to get the item icon, description, or
working directory, as it can in Windows 3.1. Therefore, GetIcon(),
GetDescription(), and GetWorkingDir() do not work in Windows NT.
However, AppProperties can still be used to dump out the contents of a
group, by specifying the group name in lParam.

Here's how a Win32 application can get the item icon, the description,
and the working directory:

1. Initiate a conversation with the Shell as follows

 SendMessage(-1, WM_DDE_INITIATE, hWndApp, lParam);

 where lParam points to an atom representing:

 LOWORD | HIWORD

 Shell | AppIcon : To get an item's icon
 Shell | AppDescription : To get an item's description
 Shell | AppWorkingDir : To get an item's working directory

2. Get the item DDE number.

 The DDE number is stored by Program Manager in the STARUPINFO
 structure of the application when the application is started. The
 application can get the startup information with:

 GetStartupInfo(&StartupInfo);

 The field lpReserved in the STARUPINFO structure is in the
 following format

 dde.#, hotkey.##

 where the DDE number is # and the hot key for the item is ##.

3. Request data as follows

 SendMessage(hwndProgMan, WM_DDE_REQUEST, hwndApp, lParam);

 where the lParam HIWORD is the item's DDE number obtained in step
 2.

4. The data is returned in lParam of WM_DDE_DATA message. The DDE data
 value is a string for AppDescription and AppWorkingDir DDE
 transactions. For AppIcon, the data value has the following
 structure:

 typedef struct _PMIconData {
 DWORD dwResSize;
 DWORD dwVer;
 BYTE iResource; // icon resource
 } PMICONDATA, *LPPMICONDATA;

 To create the icon, the application must call:

 hIcon = CreateIconFromResource((LPBYTE)&(lpPMIconData->iResource),
 lpPMIconData->dwResSize,
 TRUE,
 lpPMIconData->dwVer
);

Additional reference words: 3.10

INF: Win32 Drag and Drop Server
Article ID: Q105530
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The supported method for creating a drag and drop server is to use OLE
(Object Linking and Embedding) version 2.0. This works on Windows and
Windows NT and will work on future versions of these operating
systems.

Additional reference words: 3.10

INF: ClipCursor() Requires WINSTA_WRITEATTRIBUTES
Article ID: Q106384
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The documentation for ClipCursor() states that the calling process
must have WINSTA_WRITEATTRIBUTES access to the window station.
However, this permission does not have to be enabled programmatically
because the system always grants the Local Login SID (the interactive
user) WINSTA_WRITEATTRIBUTES access, regardless of the permission
groups to which the user belongs.

MORE INFORMATION
================

The following code shows how to confine the cursor to the application
window during WM_ACTIVATE processing. Note that the clip cursor region
must be restored to its previous state each time the application
deactivates.

Sample Code

 static RECT rcOldClip;
 .
 .
 .

 case WM_ACTIVATE:{
 short fActive = LOWORD(wParam);

 if(fActive){
 RECT rcNewClip;

 /* Record the area in which the cursor can move. */
 GetClipCursor(&rcOldClip);

 /* Get the dimensions of the application's client area. */
 GetClientRect(hWnd, &rcNewClip);

 /* Convert to screen coordinates. */
 MapWindowPoints(hWnd, NULL, (LPPOINT)&rcNewClip, 2);

 /* Confine the cursor to the application's window. */
 ClipCursor(&rcNewClip);
 }
 else{
 /* Restore the cursor to its previous area. */

 ClipCursor(&rcOldClip);
 }
 break;
 }

Additional reference words: 3.10

INF: Retrieving DIBs from the Clipboard
Article ID: Q106386
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

Retrieving a DIB (device-independent bitmap) from the clipboard can
take significantly more time than retrieving a bitmap from the
clipboard. The difference stems from the fact that a bitmap is a GDI
object and a DIB is a global memory object.

When SetClipBoardData() is passed a global memory handle, as it is
when it is passed a handle to a DIB, all the data gets copied into the
Win32 server and put into a sharable section of memory. When the DIB
is retrieved with GetClipBoardData(), the shared memory is mapped into
the application's virtual address space and the memory handle is
cached. Any subsequent calls to GetClipBoardData() return quickly,
because the memory does not have to be remapped.

In contrast, when retrieving a bitmap with GetClipBoardData(), only a
handle is created, because a bitmap is a GDI object.

When CloseClipboard() is called, all of the cached handles to shared
memory and GDI objects are deleted.

Rather than reopening the clipboard, it is a good idea to keep a local
copy of anything retrieved from the clipboard if the item will be used
again after the clipboard has been closed. In general, data should be
retrieved from the clipboard only when the application is doing a
paste or if the application is a clipboard viewer processing a
WM_DRAWCLIPBOARD message.

MORE INFORMATION
================

The data for a GDI object exists on the server side. In other words,
bitmaps and DDBs (device-dependent bitmaps) exist in the Win32
subsystem address space. Only the handles of GDI objects are private
to an application. Therefore, to make a bitmap or a DDB accessible to
another application, only a call to DuplicateHandle() is needed.

Note that even though it is faster to retrieve a DDB from the
clipboard, it is still recommended to put a DIB on the clipboard
rather than a DDB.

Additional reference words: 3.10

INF: NEW.H Does Not Contain new() that Takes a void*
Article ID: Q99871

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The form of operator new that takes a parameter of type "void *" was
added in the March '93 ANSI C++ draft document, as Section 17.1.1.3.
As such, it is not supported by the Win32 Software Development Kit
(SDK) compiler.

This feature may be added to a future Microsoft C/C++ compiler;
however, there are certain considerations. If this addition is made to
NEW.H, then every C++ program that includes NEW.H in more than one
module will receive multiple definition errors. Either the definition
must be declared in the CRT or declared INLINE. Furthermore, because
the user should be able to replace the definition of "operator new",
the definition must be replaced in the CRT to ensure that it is not
inlined into some modules, which would prevent it from being
user-replaced.

Additional reference words: 3.10

INF: Win32 Equivalents for C Run-Time Functions
Article ID: Q99456
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

Many of the C run-time functions have direct equivalents in the Win32
application programming interface (API). This article lists the C
run-time functions by category with their Win32 equivalents or the
word "none" if no equivalent exists.

Note that the functions that are followed by an asterisk (*) are part
of the 16-bit C run-time only. Functions that are unique to the 32-bit
C run time are listed separately in the last section. All other
functions are common to both C run times.

Buffer Manipulation

 _memccpy none
 memchr none
 memcmp none
 memcpy CopyMemory
 _memicmp none
 memmove MoveMemory
 memset FillMemory, ZeroMemory
 _swab none

Character Classification

 isalnum IsCharAlphaNumeric
 isalpha IsCharAlpha, GetStringTypeW (Unicode)
 __isascii none
 iscntrl none, GetStringTypeW (Unicode)
 __iscsym none
 __iscsymf none
 isdigit none, GetStringTypeW (Unicode)
 isgraph none
 islower IsCharLower, GetStringTypeW (Unicode)
 isprint none
 ispunct none, GetStringTypeW (Unicode)
 isspace none, GetStringTypeW (Unicode)
 isupper IsCharUpper, GetStringTypeW (Unicode)
 isxdigit none, GetStringTypeW (Unicode)
 __toascii none
 tolower CharLower
 _tolower none
 toupper CharUpper
 _toupper none

Directory Control

 _chdir SetCurrentDirectory
 _chdrive SetCurrentDirectory
 _getcwd GetCurrentDirectory
 _getdrive GetCurrentDirectory
 _mkdir CreateDirectory
 _rmdir RemoveDirectory
 _searchenv SearchPath

File Handling

 _access none
 _chmod SetFileAttributes
 _chsize SetEndOfFile
 _filelength GetFileSize
 _fstat See Note 5
 _fullpath GetFullPathName
 _get_osfhandle none
 _isatty GetFileType
 _locking LockFileEx
 _makepath none
 _mktemp GetTempFileName
 _open_osfhandle none
 remove DeleteFile
 rename MoveFile
 _setmode none
 _splitpath none
 _stat none
 _umask none
 _unlink DeleteFile

Creating Text Output Routines

 _displaycursor* SetConsoleCursorInfo
 _gettextcolor* GetConsoleScreenBufferInfo
 _gettextcursor* GetConsoleCursorInfo
 _gettextposition* GetConsoleScreenBufferInfo
 _gettextwindow* GetConsoleWindowInfo
 _outtext* WriteConsole
 _scrolltextwindow* ScrollConsoleScreenBuffer
 _settextcolor* SetConsoleTextAttribute
 _settextcursor* SetConsoleCursorInfo
 _settextposition* SetConsoleCursorPosition
 _settextwindow* SetConsoleWindowInfo
 _wrapon* SetConsoleMode

Stream Routines

 clearerr none
 fclose CloseHandle
 _fcloseall none
 _fdopen none
 feof none
 ferror none
 fflush FlushFileBuffers
 fgetc none
 _fgetchar none

 fgetpos none
 fgets none
 _fileno none
 _flushall none
 fopen CreateFile
 fprintf none
 fputc none
 _fputchar none
 fputs none
 fread ReadFile
 freopen (std handles) SetStdHandle
 fscanf none
 fseek SetFilePointer
 fsetpos SetFilePointer
 _fsopen CreateFile
 ftell SetFilePointer (check return value)
 fwrite WriteFile
 getc none
 getchar none
 gets none
 _getw none
 printf none
 putc none
 putchar none
 puts none
 _putw none
 rewind SetFilePointer
 _rmtmp none
 scanf none
 setbuf none
 setvbuf none
 _snprintf none
 sprintf wsprintf
 sscanf none
 _tempnam GetTempFileName
 tmpfile none
 tmpnam GetTempFileName
 ungetc none
 vfprintf none
 vprintf none
 _vsnprintf none
 vsprintf wvsprintf

Low-Level I/O

 _close _lclose, CloseHandle
 _commit FlushFileBuffers
 _creat _lcreat, CreateFile
 _dup DuplicateHandle
 _dup2 none
 _eof none
 _lseek _llseek, SetFilePointer
 _open _lopen, CreateFile
 _read _lread, ReadFile
 _sopen CreateFile
 _tell SetFilePointer (check return value)
 _write _lread

Console and Port I/O Routines

 _cgets none
 _cprintf none
 _cputs none
 _cscanf none
 _getch ReadConsoleInput
 _getche ReadConsoleInput
 _inp none
 _inpw none
 _kbhit PeekConsoleInput
 _outp none
 _outpw none
 _putch WriteConsoleInput
 _ungetch none

Memory Allocation

 _alloca none
 _bfreeseg* none
 _bheapseg* none
 calloc GlobalAlloc
 _expand none
 free GlobalFree
 _freect* GlobalMemoryStatus
 _halloc* GlobalAlloc
 _heapadd none
 _heapchk none
 _heapmin none
 _heapset none
 _heapwalk none
 _hfree* GlobalFree
 malloc GlobalAlloc
 _memavl GlobalMemoryStatus
 _memmax GlobalMemoryStatus
 _msize* GlobalSize
 realloc GlobalReAlloc
 _set_new_handler none
 _set_hnew_handler* none
 _stackavail* none

Process and Environment Control Routines
--
 abort none
 assert none
 atexit none
 _cexit none
 _c_exit none
 _exec functions none
 exit ExitProcess
 _exit ExitProcess
 getenv GetEnvironmentVariable
 _getpid GetCurrentProcessId
 longjmp none
 _onexit none
 perror FormatMessage

 _putenv SetEnvironmentVariable
 raise RaiseException
 setjmp none
 signal (ctrl-c only) SetConsoleCtrlHandler
 _spawn functions CreateProcess
 system CreateProcess

String Manipulation

 strcat, wcscat lstrcat
 strchr, wcschr none
 strcmp, wcscmp lstrcmp
 strcpy, wcscpy lstrcpy
 strcspn, wcscspn none
 _strdup, _wcsdup none
 strerror FormatMessage
 _strerror FormatMessage
 _stricmp, _wcsicmp lstrcmpi
 strlen, wcslen lstrlen
 _strlwr, _wcslwr CharLower, CharLowerBuffer
 strncat, wcsncat none
 strncmp, wcsncmp none
 strncpy, wcsncpy none
 _strnicmp, _wcsnicmp none
 _strnset, _wcsnset FillMemory, ZeroMemory
 strpbrk, wcspbrk none
 strrchr, wcsrchr none
 _strrev, _wcsrev none
 _strset, _wcsset FillMemory, ZeroMemory
 strspn, wcsspn none
 strstr, wcsstr none
 strtok, wcstok none
 _strupr, _wcsupr CharUpper, CharUpperBuffer

MS-DOS Interface

 _bdos* none
 _chain_intr* none
 _disable* none
 _dos_allocmem* GlobalAlloc
 _dos_close* CloseHandle
 _dos_commit* FlushFileBuffers
 _dos_creat* CreateFile
 _dos_creatnew* CreateFile
 _dos_findfirst* FindFirstFile
 _dos_findnext* FindNextFile
 _dos_freemem* GlobalFree
 _dos_getdate* GetSystemTime
 _dos_getdiskfree* GetDiskFreeSpace
 _dos_getdrive* GetCurrentDirectory
 _dos_getfileattr* GetFileAttributes
 _dos_getftime* GetFileTime
 _dos_gettime* GetSystemTime
 _dos_getvect* none
 _dos_keep* none
 _dos_open* OpenFile
 _dos_read* ReadFile

 _dos_setblock* GlobalReAlloc
 _dos_setdate* SetSystemTime
 _dos_setdrive* SetCurrentDirectory
 _dos_setfileattr* SetFileAttributes
 _dos_setftime* SetFileTime
 _dos_settime* SetSystemTime
 _dos_setvect* none
 _dos_write* WriteFile
 _dosexterr* GetLastError
 _enable* none
 _FP_OFF* none
 _FP_SEG* none
 _harderr* See Note 1
 _hardresume* See Note 1
 _hardretn* See Note 1
 _int86* none
 _int86x* none
 _intdos* none
 _intdosx* none
 _segread* none

Time

 asctime See Note 2
 clock See Note 2
 ctime See Note 2
 difftime See Note 2
 _ftime See Note 2
 _getsystime GetDateAndTime
 gmtime See Note 2
 localtime See Note 2
 mktime See Note 2
 _strdate See Note 2
 _strtime See Note 2
 time See Note 2
 _tzset See Note 2
 _utime SetDateAndTimeFile

Virtual Memory Allocation

 _vfree* See Note 3
 _vheapinit* See Note 3
 _vheapterm* See Note 3
 _vload* See Note 3
 _vlock* See Note 3
 _vlockcnt* See Note 3
 _vmalloc* See Note 3
 _vmsize* See Note 3
 _vrealloc* See Note 3
 _vunlock* See Note 3

32-Bit C Run Time

 _beginthread CreateThread
 _cwait WaitForSingleObject w/ GetExitCodeProcess
 _endthread ExitThread
 _findclose FindClose

 _findfirst FindFirstFile
 _findnext FindNextFile
 _futime SetFileTime
 _get_osfhandle none
 _open_osfhandle none
 _pclose See Note 4
 _pipe CreatePipe
 _popen See Note 4

Note 1: The _harderr functions do not exist in the Win32 API. However,
much of their functionality is available through structured exception
handling.

Note 2: The time functions are based on a format that is not used in
Win32. There are specific Win32 time functions that are documented in
the Help file.

Note 3: The virtual memory functions listed in this document are
specific to the MS-DOS environment and were written to access memory
beyond the 640K of RAM available in MS-DOS. Because this limitation
does not exist in Win32, the standard memory allocation functions
should be used.

Note 4: While _pclose() and _popen() do not have direct Win32
equivalents, you can (with some work) simulate them with the following
calls:

 _popen CreatePipe
 CreateProcess

 _pclose WaitForSingleObject
 CloseHandle

Note 5: GetFileInformationByHandle() is the Win32 equivalent for the
_fstat() C run-time function. However, GetFileInformationByHandle() is
not supported by Win32s. GetFileSize(), GetFileAttributes(),
GetFileTime(), and GetFileTitle are supported by Win32s.

Additional reference words: 3.10

Sample: Writing NTSD Extensions
Article ID: Q85885

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

This article and the associated sample (called NTSD) demonstrate how
to write an NTSD extension for the NTSD debugger.

While debugging, it is often necessary to look up certain fields of a
particular structure in the program. This process usually involves
dumping the address of the structure in question and locating the
specific fields in the dump, which can be tedious and inefficient.

With NTSD, programmers can write a dumping routine to be called by the
NTSD debugger.

The routine must be in a DLL and have the following prototype:

 void Routine (HANDLE, HANDLE, HANDLE, PNTSD_EXTENSION_APIS, LPSTR);

 See the file DEBUG.C for details.

Then, to invoke the routine in NTSD, the user would do the following:

 !module.routine argument

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

INF: Using a Mouse with MEP Under Windows NT
Article ID: Q83300

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Microsoft Editor (MEP) included with the Win32 Software
Development Kit (SDK) can be used with a mouse to position the cursor.

By default, the mouse is not enabled for MEP. You must add the switch
"usemouse:yes" (without the quotation marks) to the TOOLS.INI file
under the [m mep] section. The TOOLS.INI file is a text file editable
by MEP or Notepad.

To change the position of the cursor, first position the mouse pointer
on the new location and then click the left mouse button.

INF: Macros to Facilitate Porting Applications to Windows NT
Article ID: Q83359

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following is a list of macros that make the porting of
applications to Microsoft Windows NT easier.

More Information:

// NT Macros

#if defined(WIN32)

#define _fmemcpy(x,y,z) memcpy(x,y,z)
#define _fmemcmp(x,y,z) memcmp(x,y,z)
#define _fmemset(x,y,z) memset(x,y,z)
#define _fmemicmp(x,y,z) memicmp(x,y,z)
#define _fmemmove(x,y,z) memmove(x,y,z)

#define _fstrcpy(x,y) strcpy(x,y)
#define _fstrcmp(x,y) strcmp(x,y)
#define _fstrcat(x,y) strcat(x,y)
#define _fstrlen(x) strlen(x)
#define _fstricmp(x,y) stricmp(x,y)
#define _fstrstr(x,y) strstr(x,y)
#define _fstrncpy(x,y,z) strncpy(x,y,z)
#define _fstrncmp(x,y,z) strncmp(x,y,z)
#define _fstrupr(x) strupr(x)
#define _fstrlwr(x) strlwr(x)
#define _fstrchr(x,y) strchr(x,y)
#define _fstrrchr(x,y) strrchr(x,y)
#define _fstrnicmp(x,y,z) strnicmp(x,y,z)
#define _fstrpbrk(x,y) strpbrk(x,y)

#define _nfree(x) free(x)
#define _nmalloc(x) malloc(x)

#define _loadds // not valid under NT

#define NT_GetWndInstance(hwnd) (HINSTANCE)GetWindowLong(hwnd, GWL_HINSTANCE)

#define NT_GetWndID(hwnd) (UINT)GetWindowLong(hwnd, GWL_ID);

#define NT_ParseWM_COMMAND(id, ntfy, hwnd, wPar, lPar) \
 (id = LOWORD(wPar), ntfy = HIWORD(wPar), hwnd = (HWND)lPar)

#define NT_PostWM_COMMAND(hwnd, id, ntfy, hwndChild) \

 PostMessage(hwnd,WM_COMMAND,(UINT)MAKELONG(id,ntfy),(LONG)hwndChild)

#define NT_SendWM_COMMAND(hwnd, id, ntfy, hwndChild) \
 SendMessage(hwnd, WM_COMMAND,(UINT)MAKELONG(id,ntfy),(LONG)hwndChild)

#if !defined(LONG2POINT)
#define LONG2POINT(l,pt) ((pt).x=(SHORT)LOWORD(l), (pt).y=(SHORT)HIWORD(l))
#endif

// NT Equivalents for Windows

#else
#define NT_GetWndInstance(hwnd) (HINSTANCE)GetWindowWord(hwnd, GWW_HINSTANCE)

#define NT_GetWndID(hwnd) (UINT)GetWindowWord(hwnd, GWW_ID);

#define NT_ParseWM_COMMAND(id, ntfy, hwnd, wPar, lPar) \
 (id = wPar, ntfy = HIWORD(lPar), hwnd = (HWND)LOWORD(lPar))

#define NT_PostWM_COMMAND(hwnd, id, ntfy, hwndChild) \
 PostMessage(hwnd, WM_COMMAND, (UINT)id, MAKELONG(hwndChild, ntfy))

#define NT_SendWM_COMMAND(hwnd, id, ntfy, hwndChild) \
 SendMessage(hwnd, WM_COMMAND, (UINT)id, MAKELONG(hwndChild, ntfy))

#endif

INF: Correct Use of Try/Finally
Article ID: Q83670

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Try/finally, used correctly, helps to provide a robust application.
However, if used incorrectly it can cause unnecessary overhead. any
flow of control out of the try body of try/finally is an abnormal
termination that can cause hundreds of instructions to be executed on
an x86 system, and thousands on a MIPS machine, even if control leaves
the try body via a control statement on the very last statement of the
try body. The language definition states that control must leave the
try body sequentially for normal termination to occur (that is,
execution falls through the bottom of the try body).

The following sample demonstrates an incorrect use of try/finally:

/* Incorrect use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 return;
 }
 .
 .
 } finally {
 .
 .
 }
 return;
}

The overhead can be avoided in the above example by moving the return
AFTER the end of the finally clause. The following provides more
detail on the correct use of try/finally.

More Information:

Execution of a termination handler due to abnormal termination of a
try body is expensive. Abnormal termination occurs when control leaves
a try body in any way other than by falling through the bottom.
Intentionally branching out of a try body is still an abnormal
termination.

In the above example, abnormal termination of the try body occurs if
the return in the middle of the try body is executed. If the predicate
of the if is false, then extremely efficient execution of the finally
clause occurs because this is not abnormal termination and the finally
clause is called directly by inline code.

When abnormal termination occurs hundreds to thousands of instructions
are executed because an unwind must be executed, which must search
backward through frames to determine if any termination handlers
should be called. On an x86 system, this executes the C run-time
handler and examines the handler list. On a MIPS machine, this also
causes the function table to be searched and the prologue of each
intervening function to be executed backwards interpretively.

You should always avoid the execution of a termination handler as a
result of the abnormal termination of a try body by a return, or other
direct flow of control out of the try body. Abnormal termination
occurs whenever control leaves the try body other than by falling
through the bottom. This can occur because of a return, goto,
continue, or break. It can also occur because of an exception, which
presumably cannot be avoided.

In the above example, abnormal termination in the nonexception case
can be eliminated easily as follows:

/* Correct use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 } else {
 .
 .
 }
 } finally {
 .
 .
 }
 return;

}

Now both clauses of the if fall through to the termination handler in
all but exceptional cases and execute the termination handler in the
most efficient way. This also has the same logical execution as the
previous sample.

In summary, the correct use of try/finally is a powerful method to
help you write robust applications. Care should be taken to ensure the
correct use of try/finally.

INF: Concatenating Resource Files Does Not Work on Windows NT
Article ID: Q83934

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Concatenating resource files (with copy /b or a concatenating program)
does not work under Windows NT.

More Information:

Under MS-DOS and OS/2 Presentation Manager (PM), concatenating
resources works because each resource file has a header that contains
the size of the data in the file. Code that reads the .RES file can
read each header to get the size of the data, and then skip to the
next resource until the desired resource is located. The
.RES file does not have a "master directory" or header of its own.

Under Win32, this method does not work because the CVTRES tool puts a
COFF wrapper around the .RES.

INF: RCDATA Begins on 32-Bit Boundary in Windows NT
Article ID: Q84081

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

RCDATA is guaranteed to begin on a DWORD boundary. However, the
strings and the integers specified in the statement are not aligned by
the Resource Compiler (RC).

More Information:

 RCDATA statement:

 resname RCDATA
 BEGIN

 0,0,

 END

The definition of RCDATA is not changed. The strings and integers
specified in the statement, 0 in this case, are not aligned on the
DWORD boundary. However, the beginning of the data is DWORD-aligned.

Additional reference words: 32 bit 32-bit double-word double

PRB: Win32s: GetVolumeInformation Returns Incorrect Values
Article ID: Q93639

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 In Win32s 1.0, GetVolumeInformation() always returns a volume ID of
 0x12345678.

STATUS
 Microsoft has confirmed this to be a problem in Win32s version 1.0.
 We are researching this problem and will post new information here
 when it becomes available.

Additional reference words: 3.10

PRB: LIB.EXE: Adding Object Documentation Error
Article ID: Q93641

--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Page 233 (Chapter 4, "Library Manager/Adding an Object") of the Microsoft
Win32 Preliminary SDK for Windows NT "Tools" manual incorrectly states that
adding an object to a library defaults to the given library name as the
output library.

However, the following

 lib32 PROJECT.LIB NEW.OBJ

does not output a new PROJECT.LIB file that includes NEW.OBJ; rather, it
outputs a file, COFF.OUT, with the new object module, which must be
manually renamed to PROJECT.LIB.

The correct syntax is:

 lib32 -out:PROJECT.LIB PROJECT.LIB NEW.OBJ

Additional reference words: 3.10

PRB: Problems Using COMM APIs and the DCB Structure on MIPS
Article ID: Q98887
--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 There are problems accessing the DCB (device control block)
 structure when using the March Win32 Software Development Kit (SDK)
 for MIPS. The DCB structure is used by the following APIs:

 BuildCommDCB
 BuildCommDCBAndTimeouts
 GetCommState
 SetCommState

 The fields declared after wReserved appear to be incorrect, as if
 they should have been shifted down by 2. If any of them are set,
 then SetCommState() returns error 87 (INVALID PARAMETER).

CAUSE
 The problems with DCB alignment are due to the fact that the system
 DLLs were built with the old MIPS compiler (cc) and the new MIPS
 compiler (mcl). These compilers have different alignment rules.

RESOLUTION
 The workaround is to use the old MIPS compiler (cc), which is
 included on the March beta CD. The new MIPS compiler (mcl) is
 installed by default.

STATUS
 Microsoft has confirmed this to be a problem in the March Win32 SDK.

More Information:

The two compilers are described in more detail in the README.TXT file.

The following description of the DCB structure is taken from the help
file:

typedef struct _DCB { /* dcb */
 DWORD DCBlength; /* sizeof(DCB) */
 DWORD BaudRate; /* current baud rate */
 DWORD fBinary: 1; /* binary mode, no EOF check */
 DWORD fParity: 1; /* enable parity checking */
 DWORD fOutxCtsFlow:1; /* CTS output flow control */
 DWORD fOutxDsrFlow:1; /* DSR output flow control */
 DWORD fDtrControl:2; /* DTR flow control type */
 DWORD fDsrSensitivity:1; /* DSR sensitivity */

 DWORD fTXContinueOnXoff:1; /* XOFF continues Tx */
 DWORD fOutX: 1; /* XON/XOFF out flow control */
 DWORD fInX: 1; /* XON/XOFF in flow control */
 DWORD fErrorChar: 1; /* enable error replacement */
 DWORD fNull: 1; /* enable null stripping */
 DWORD fRtsControl:2; /* RTS flow control */
 DWORD fAbortOnError:1; /* abort reads/writes on error */
 DWORD fDummy2:17; /* reserved */
 WORD wReserved; /* not currently used */

 WORD XonLim; /* transmit XON threshold */
 WORD XoffLim; /* transmit XOFF threshold */
 BYTE ByteSize; /* number of bits/byte, 4-8 */
 BYTE Parity; /* 0-4=no,odd,even,mark,space */
 BYTE StopBits; /* 0,1,2 = 1, 1.5, 2 */
 char XonChar; /* Tx and Rx XON character */
 char XoffChar; /* Tx and Rx XOFF character */
 char ErrorChar; /* error replacement character */
 char EofChar; /* end of input character */

 char EvtChar; /* received event character */
} DCB;

Additional reference words: 3.10 3.1

INF: LIB32.EXE Converts Object Files to COFF Format
Article ID: Q93707

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

LIB32.EXE converts .OBJ files into COFF objects before inserting them
into a library. Thus, a Microsoft format .OBJ file (non-COFF) inserted
into a library will not be the same size if extracted back from the
library.

This should not be an issue because the cl386 (x86) or mcl (mips)
compilers will produce COFF objects.

Additional reference words: 3.10

INF: Microsoft Implementation of Bit Fields in cl386 Compiler
Article ID: Q88952

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The cl386 compiler deals with bit fields in structures in a manner
similar to Microsoft C version 7.0. The following is Microsoft-
specific information on bit fields, including 32-bit-specific
information, which is clearly marked.

More Information:

Bit Field Types

Microsoft 80x86 compilers allocate bit fields according to the type of
the bit field. ANSI requires only the unsigned int/signed int level of
functionality, but a Microsoft extension to the ANSI C standard allows
char and long types (both signed and unsigned) for bit fields. The
compiler will create unnamed bit fields with base type long, short, or
char (signed or unsigned) to pad allocated bit fields, forcing
alignment to a boundary appropriate to the base type:

 char 8 bits
 short (int) 16 bits
 long 32 bits

Bit Field Packing

The 80x86 compilers merge adjacent bit fields of the same type. This
allows you to control the packing with a little more sophistication,
as packing is done on the basis of the type you declare the bit field
to be. For example

 struct hello {
 unsigned char a:5;
 unsigned char b:5;
 }

will align both elements on byte boundaries (as they cannot fit within
a byte), whereas

 struct there {
 unsigned short a:5;
 unsigned short b:5;
 }

will pack them into 10 bits. Note also that those two structure
representations will be padded out to 16 bits to fill the short. Note
that

 struct blankspace {
 unsigned long a:5;
 unsigned long b:5;
 }

will be allocated in 32 bits due to the long data type of a and b,
even though the packed bit fields would fit inside a short. Also,

 struct mybitfield{
 unsigned short a:5;
 unsigned char b:4
 unsigned long c:6
 }

will not have its bit fields merged at all, as there are no adjacent bit
fields of the same type.

 MIPS-Specific Information

 Unlike the 80x86 compilers, the MIPS compiler ignores the types of
 adjacent bit fields with regard to packing. The MIPS compiler packs
 adjacent bit fields into the smallest integral type, such as char
 or short, regardless of type.

 However, like the 80x86 compilers, nonadjacent bit fields will not
 be packed.

Bit Field Alignment

Every data object has an "alignment requirement" (AR). For data types
that are neither aggregates nor arrays, this is either the size of the
object OR the current packing size [that is, /Zp or #pragma pack()],
whichever is LESS. The AR of an aggregate or array is the largest AR
of its members or elements. Every object is allocated such that:

 OFFSETOFALLOCATION % AR = 0

A bit field in every way has the semantics of its integral type,
except that adjacent bit fields are packed into the same allocation
unit if the integral types are the same size (the bit fields need not
be the same width) and the new bit field will fit without crossing the
boundary imposed by the common AR of the bit fields.

 80x86 32-Bit-Specific Information

 The default data type packing size is 4 for 32-bit targets (/Zp4).
 Note the example structure mybitfield, above. The structure will be
 allocated in 8 bytes: 2 for mybitfield.a, 1 for mybitfield.b, 1
 byte to pad to a 4-byte boundary, and 4 for mybitfield.c. Likewise,
 a single character bit field would be allocated in 32 bits (1 byte

 for the bit field, and 3 bytes to pad to a 4-byte boundary).

Signed/Unsigned Interpretation

On the 16-bit implementations, unsigned int has the same behavior as
unsigned short. This is similar to signed types. Bit fields defined as
int are treated as signed.

 32-Bit-Specific Information

 Note that on the 32-bit implementations, unsigned long has the same
 behavior as unsigned int, likewise with signed.

Signed bit fields work, but the behavior of signed 1-bit fields is
implementation specific (in other words, don't use them). However,
longer fields work as expected.

Bit Field Allocation

For 16-bit targets, bit fields default to size short, which can cross
a byte boundary but not a 16-bit or 32-bit boundary. If the size and
location of a bit field would cause it to overflow the current
integer, the field is moved to the beginning of the next available
integer. If a bit field is declared as a long, it can hold up to 32
bits. In either case, an individual field cannot cross a 16 or 32-bit
boundary.

 32-Bit-Specific Information

 Bit fields default to size long for the 32-bit compiler. An
 individual field may cross a 16-bit boundary.

Merged bit fields are allocated within an integer from the
least-significant to the most-significant bit. In the following code

 struct mybit fields {
 unsigned short a : 4;
 unsigned short b : 5;
 unsigned short c : 7;
 } test;

 void main(void);
 {
 test.a = 2;
 test.b = 31;
 test.c = 0;
 }

the bits would be arranged as follows:

 0 1 F 2 << Hex value
 0000 0001 1111 0010 << Binary value
 cccc cccb bbbb aaaa << field allocated corresponding bit

Since the 80x86 family of processors store the low byte of 2-byte word
values before the high byte, the integer 0x01F2 above would be stored
in physical memory as 0xF2 followed by 0x01.

Bit Field Usage

Currently, simple operations with bit fields are encouraged instead of
complex operations, as the code produced is relatively more efficient.
For instance, bit-field assignment statements are less efficient than
corresponding non-bit-field assigments.

In addition, the compiler doesn't currently optimize bit-field
initialization constructs; for example

 struc.a = 4;
 struc.b = 6;
 struc.c = 3;...

are not optimized with a single assign. Therefore, bit fields are an
efficient way to organize binary data items in a small space, but may
not be quite as speed efficient, depending on the operation.

Additional reference words: 3.10

INF: OS/2-to-Windows Migration Information
Article ID: Q89058

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Several tools designed to make it easier to port OS/2 applications to
Windows and Windows NT are available in the "Porting from OS/2"
download library in the MSWIN32 forum on CompuServe. These tools
handle resource-file conversion, help-file conversion, image
conversion, and in some cases, source-code conversion. Consider the
following as guidelines:

1. Convert the OS/2 .RC file to Windows with the tools in RESCONV.ZIP.

2. Solve build and environment issues. Recompile and link the original
 code on Windows NT.

3. Run the Sed script on OS/2 code. The Gnu Sed script ported to
 Windows NT is in SEDGNU.ZIP.

4. Run MS_SSED, which does some custom munging of your source code.

5. Some manual steps are still needed; these are outlined in
 CHANGE.DOC.

Your application has now been ported to Windows NT.

More Information:

The following is a brief description of the available tools, including
two files that were updates to the original posting:

 ANNOTE.ZIP Source code annotation system. It is a batch version
 of PortTool (Windows NT SDK) with a database for
 converting OS/2 to Windows. Note that most of the
 data file for this is outdated with the tools in
 OS2PORT.ZIP.

 APICNT.ZIP Examines your OS/2 DLL and .EXE, extracts OS/2 API
 information, and shows you how to analyze this
 information. This should help you estimate and plan
 the port.

 HELPC.ZIP Converts OS/2 IPF files to Windows RTF.

 IMAGEC.ZIP Converts OS/2 image files to Windows format.

 OS2PORT.ZIP This tree takes Petzold's HEAD.EXE program from

 "Programming the OS/2 Presentation Manager"
 (Microsoft Press) and shows how to port it to
 Windows NT.

 RESCONV.ZIP Convert OS/2 .RC files to Windows .RC files.

 ROOT.ZIP This contains a README.TXT and UNPACKME.BAT file,
 which gives the complete description of the entire
 tree.

 SEDGNU.ZIP Gnu Sed. This is NOT copyrighted by Microsoft.

 WINHLP.ZIP WINHELP.EXE Help file for moving OS/2 code to
 Windows. Contains hypertext links to 16- and 32-bit
 Windows Help files.

These files were included in the update to the original posting:

 UPDT01.ZIP Provides updates to the files listed above.

 SHRMEM.ZIP Provides a DLL that manages shared memory under
 Windows NT. This includes provisions to set up the
 memory addresses so they are the same across
 different processes.

Additional reference words: 3.10

INF: Source-level Debugging Under NTSD
Article ID: Q99053
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.10
--

Summary:

The following are the steps used for source-level debugging under
NTSD:

1. Compile using -Zi and -Od.

2. Link using debug:full and debugtype:coff.

3. Load the program into the debugger.

4. Use s+ to change to source mode.

 -or-

 Use s& to change to mixed mode.

For a console application, type "g main" to get to the program start.
For a GUI application, type "g WinMain" to get to the program start.

Type "v .<number>" to list source lines starting at <number>. For
example, type the following

 v .20

to see all lines starting at line 20.

Additional reference words: 3.10

INF: Preserving Case When Assembling /Fa Listing
Article ID: Q94271

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When assembling the output of a /Fa listing from the Microsoft NT C
compiler, it necessary to specify the -Ml switch on the MASM386 command
line. The -Ml switch instructs the assembler to preserve case for all
symbols. The symbols generated by the C compiler are case sensitive, which
makes it necessary for the assembler to preserve case.

If the -Ml switch is not used, errors due to unresolved externals will
occur during linking.

Additional reference words: 3.10 3.1

PRB: Debugging the Open Common Dialog Box in WinDbg
Article ID: Q99952
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOMS

When debugging an application that uses the Open common dialog box
(created by the GetOpenFileName function), the program stops and the
following information is displayed in the Command window:

 Thread Terminate: Process=0, Thread=2, Exit Code=1

CAUSE

The Open common dialog box causes a thread to be created. At this
point in the debugging, that thread has terminated. By default, WinDbg
halts whenever a thread terminates.

RESOLUTION

Execute the go command (type "g" at the command prompt). Execution
will continue.

More Information:

To prevent WinDbg from halting when a thread is terminated, select
Debug from the Options menu and check "Go on thread terminate."

Additional reference words: 3.10

INF: Win32 Subsystem Object Cleanup
Article ID: Q89290

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Win32 subsystem guarantees that all Win32 objects owned by a
process will be freed when an application terminates. To accomplish
this, the Win32 subsystem keeps track of who owns these objects; it
also keeps a reference count. Reference counts are used when the
object is owned by more then one process. For example, a memory mapped
file can be used to provide interprocess communication, where more
than one process would own that object. The subsystem must make sure
that the reference count is zero before the object can be freed.

Freeing of Win32 objects can occur at different times. In general, it
occurs at process termination, but for some objects, it occurs at
thread termination.

Note: When running Win32 applications with Windows 3.1 using the
Win32s environment, it is the responsibility of the Win32 application
to ensure that all allocated GDI objects are deleted before the
program terminates. This is different from the behavior of the
application with Windows NT. With Windows NT, the GDI subsystem cleans
up all orhphaned GDI objects. Because there is no GDI subsystem with
Windows 3.1, this behavior is not supported.

More Information:

At process or thread termination, the Win32 subsystem searches its
lists to find objects owned by this process or thread. Those that are
owned by the terminating process or thread and whose reference counts
will be set to zero when the process or thread is fully terminated
will be freed.

The freeing of objects is slightly different for Win32 applications
running under Win32s on Windows 3.1. The 16-bit objects (GDI objects,
windows, global memory, etc.) follow the same clean-up rules as Win16
applications do under Window 3.1. The 32-bit objects, such as memory
allocated via VirtualAlloc(), shared memory via mapped file I/O,
32-bit modules, thunks allocated on the fly (for hook procedures,
wndprocs etc.) are all handled by Win32s and freed at process
termination.

The following is a list of Win32 objects. Note that it may not be
complete.

 BASE: console, event, file (including file mapping), mutex,
 semaphore, thread, process, pipe (including named pipes)

 GDI: device context (DC), bitmap, pen, brush, font, region, palette

 USER: window, cursor, icon, menu, accelerator table, desktop,
 DDE communication objects, DDE conversation objects, dialog

INF: Using MFC Build Clean Option
Article ID: Q94272

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========
After executing the following command:

 nmake clean obj=$nwd

the following error message is displayed:

 Unable to find directory wd

CAUSE
=====
After rebuilding the Microsoft Foundation Classes (MFC) library, the
object files were contained in the default directory $NWD. The dollar
sign character is used in NMAKE to specify the beginning of a macro
expansion [such as $(OBJ)]. This is the reason the dollar sign and the
following character were lost when $NWD was simply specified.

RESOLUTION
==========
There are two methods that can be used to delete the $NWD directory. The
first method is to execute the command:

 nmake MODEL=N TARGET=W DEBUG=1 clean

With this method, the nmake file determines the name of the directory by
the build parameters specified.

The second method is as follows:

 nmake clean OBJ=^$$NWD

Additional reference words: 3.10 3.1

INF: Warning C4056: Overflow in Floating Point
Article ID: Q94273

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Microsoft NT C compiler may produce the following warning:

 test.cpp(12) : warning C4056: overflow in floating point
 constant arithmetic

This does not represent a problem in the source being compiled. A future
release of the compiler will correct this problem.

Additional reference words: 3.10 3.1

INF: Unicode Conversion to Integers
Article ID: Q89295

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Under Windows NT, strings may be either Unicode or ANSI. There is no
function for reliably converting a string that might be either Unicode or
ANSI to an integer. This is because, given a random set of bytes, it is
difficult to determine whether the string is in Unicode or ANSI. The
calling program has to know which format the string uses in order to
convert it.

If the string uses Unicode, the functions wcstol(), wcstoul(), and
wcstod() can be used to perform the conversion.

Note that when you are using the Win32 application programming interface
(API), you can choose what kind of characters you get from the console or
window manager. The names of the API functions that are called to use
Unicode and ANSI characters are different. For more details, see Chapter 93
in the overview, "Unicode."

To mark a string as Unicode, insert the byte-ordering-mark (BOM) 0xFEFF in
the string and/or file.

More Information:

You can assume that the first 128 bytes in each character set are in the
same codepoint. For portability, you should code character conversions in
this range as:

 {
 TCHAR c;
 ...
 i = c - TEXT('0');
 }

The TEXT macro places an "L" before the constant if Unicode is defined.

INF: How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution
Article ID: Q89296

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The syntax for the module-definition statements HEAPSIZE and STACKSIZE
is as follows

 HEAPSIZE [reserve] [,commit]
 STACKSIZE [reserve] [,commit]

The remarks for HEAPSIZE and STACKSIZE on page 236 of the "Tools"
manual that comes with the Win32 Preliminary SDK for Windows NT state
the following:

 When commit is less than reserve, memory demands are reduced but
 execution time is slower.

By default, commit is less than reserve.

The reason that execution time is slower (and it is actually only
fractionally slower), is that the system sets up guard pages and could
have to process guard page faults.

More Information:

If the committed memory is less that the reserved memory, the system
sets up guard page(s) around the heap or stack. When the heap or stack
grows big enough, the guard pages start accessing outside the
committed area. This causes a guard page fault, which tells the system
to map in another page. The application continues to run as if you had
originally had the new page committed.

If the committed memory is greater than the reserve, no guard pages
are created and the program faults if it goes outside the committed
memory area.

Experimenting with the commit versus reserve numbers may result in a
combination that would produce noticeable results, but for most
applications, this difference is probably not noticeable. The
potential benefits do not warrant significant experimentation.

Additional reference words: 3.10

INF: MFC TRACE Output Not Working
Article ID: Q94274

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

For TRACE output to work correctly, a file in the \MFC\SRC directory named
AFX.INI needs to be copied to the \WINNT directory. This file is necessary
for TRACE to work properly.

Note: If TraceEnable = 1, then running any MFC application with Debug
information will be slow.

Additional reference words: 3.10 3.1

INF: WinDbg
Article ID: Q99953

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The WinDbg message "Breakpoint Not Instantiated" indicates that the
debugger could not resolve an address. This can happen for several
reasons:

 - A specified symbol does not exist. In this case, check for
 misspelling and check the state of the "ignore case" option if the
 symbol contains mixed case.

 -or-

 - The symbol exists, but the EXE or DLL was built with the wrong
 debugging information, or none at all. Use the -Zi and -Od compiler
 options and use the -debug:full and -debugtype:cv linker options.

 -or-

 - The symbol exists, but it is in a module that has not yet been
 loaded. If the symbol is in a DLL that is dynamically loaded the
 breakpoint was probably set before the DLL was loaded. The message
 is harmless, because WinDbg will instantiated the BP when the module
 is loaded.

Additional reference words: 3.10

INF: Fatal Error C1001: ICE ('msc1.cpp', line 555)
Article ID: Q94319

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following error is generated if a function that returns a C++ class is
declared extern "C":

 fatal error C1001: INTERNAL COMPILER ERROR (compiler file 'msc1.cpp',
 line 555)

Microsoft compilers do not currently support functions declared extern "C"
and returning C++ classes.

More Information:

The following code fragment demonstrates the internal compiler error:

Sample Code

class C1;

extern "C"
{
 C1 func1();
}

class C1
{
 public:
 int ok() { return 0; }
};

Additional reference words: 3.10 3.1

INF: Windows NT Compiler Always Includes chkstk()
Article ID: Q94320

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Windows NT C compiler seems to add chkstk() calls even when the
/Gs switch is used to disable stack overflow checking.

This behavior is by design. chkstk() is used to allocate frame sizes
greater than or equal to 4K. This ensures that the application does
not access beyond the stack guard page.

Additional reference words: 3.10 3.1

PRB: Windows NT: Inline Assembly Code Generation Error
Article ID: Q95163
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 The following piece of code

 class UINT64
 {
 public:
 ...

 UINT32 m_low;
 UINT32 m_high;
 };

 UINT64 n1;
 double n2;

 _asm
 {
 fild qword ptr n.m_low
 fild n2
 }

 compiles correctly on x86 platforms, but the disassembly is as follows:

 FILD DWORD PTR [n]
 FILD QWORD PTR [n2]

CAUSE
 This is a known code generation problem with the C/C++ compiler
 shipped with the Windows NT Software Development Kit (SDK) for x86
 platforms.

RESOLUTION
 Microsoft is researching this problem and will post new information
 here in the Microsoft Knowledge Base as it becomes available.

More Information:

Note that if you choose to include inline assembly into your code, you
lose ease of portability between platforms.

Additional reference words: 3.10 3.1

INF: Fatal Error C1056: Out of Macro Expansion Space
Article ID: Q94321

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The maximum expanded size of a macro under the NT compiler is 16K. If a
macro exceeds this limit, the following error message will be generated:

 fatal error C1056: compiler limit : out of macro expansion space

There is no workaround to this limit on the size of the macro expansion
buffer.

Additional reference words: 3.10 3.1

INF: Fatal Error C1001: ICE (file 'msc1.cpp', line 555)
Article ID: Q94322

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When the _export keyword is used to mark a C++ class for export, the
following errors are generated:

 test.cpp(7) : error C2165: '_far' : cannot modify pointers to data
 test.cpp(7) : fatal error C1001: INTERNAL COMPILER ERROR
 (compiler file 'msc1.cpp', line 555)
 Contact Microsoft Product Support Services

To correct this problem, add a _near keyword after the _export keyword.

More Information:

The following code fragment generates the internal compiler error:

class _export ExportedClass
{
public:
 ExportedClass();
 virtual void Member();
 static void SMember();
};

Additional reference words: 3.10 3.1

INF: Setting Dynamic Breakpoints in WinDbg
Article ID: Q100642

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The WinDbg breakpoint command contains a metacircular interpreter;
that is, you can execute commands dynamically once a breakpoint is
hit. This allows you to perform complex operations, including breaking
when an automatic variable has changed, as described below.

The command interpreter of WinDbg allows any valid C expression to
serve as a break condition. For example, to break whenever a static
variable has changed, use the following expression in the Expression
field of the breakpoint dialog box:

 &<variablename>

In addition, the length should be specified as 4 (the size of a DWORD)
in the length field.

This technique does not work for automatic variables because the
address of an automatic variable may change depending on the value
that the stack pointer has upon entering the function that defines the
automatic variable. This is one case where the breakpoint needs to be
redefined dynamically.

For this purpose, a breakpoint can be enabled at function start and
disabled at function exit, so that the address of the variable is
recomputed.

More Information:

Suppose that the name of the function is "subroutine" and the local
variable name is "i". The following steps will be used:

1. Start the program and step into the function that defines the
 automatic variable with the commands:

 g subroutine
 p
 bp500 ={subroutine}&i /r4 /C"?i"

 The breakpoint number is chosen to be large so that the breakpoint
 will be well out of range of other breakpoints. Note that /r4
 indicates a length of 4 because i is an integer. Make this number
 larger for other data types. The command "?i" prints out the value
 of i.

2. Next, disable this first breakpoint with the command

 bd500

 because the address of i may change. The breakpoint will be enabled
 when in the scope of function subroutine.

3. The second breakpoint definition is set at the entry point of the
 function:

 bp .<FirstLine> /C"be 500;g"

 This is where the breakpoint is enabled. Note that <FirstLine> is
 the line number of the first statement in the function subroutine.

4. The last breakpoint is set at the end of the function

 bp .<LastLine> /C"bd 500;g"

 and will disable the breakpoint again. Note that <LastLine> is the
 line number of the last statement in the function subroutine.

 Note that if the function has more than one exit point, multiple
 breakpoints may have to be defined.

Program execution stops when breakpoint #500 is hit (for example, the
value of i changes), but execution will continue after the other two
breakpoints because they contain go ("g") commands.

Additional reference words: 3.10

INF: Base Date for Time Differs Between NT and C/C++ 7.0
Article ID: Q89580

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In versions 6.0 and earlier of Microsoft C, the time functions
returned the time since 00:00:00, 01-01-1970 universal coordinated
time (UCT).

During the development of Microsoft C/C++ version 7.0, the basis for
the time functions was mistakenly changed to 00:00:00, 12-21-1899 UCT.

Microsoft did not become aware of the problem in time to correct it
before the final product release. Therefore, the base date for the
time functions in Microsoft C/C++ 7.0 is 00:00:00, 12-31-1899 UCT.

However, corrections were made in the Windows NT SDK. Its time
functions once again use 00:00:00, 01-01-1970 UCT as a basis.
Therefore, if a date is returned by a C/C++ 7.0 time function and
interpreted by an NT SDK time function (or vice versa), the time will
be roughly 70 years off. This is also true if the Microsoft Foundation
Classes (MFC) are used (specifically, CTime).

The correction will also be made in a subsequent release of the C/C++
compiler.

More Information:

To compensate for this difference:

1. Subtract 2,209,075,200 from the value returned by a C/C++ time
 function so that it will be compatible with an NT SDK function.

2. Add 2,209,075,200 to the value returned by an NT SDK function so
 that it will be compatible with a C/C++ time function.

The calculations to determine this figure are

 2,209,075,200 seconds = 86,400 seconds/day * 25,568 days

 25,568 = (70 years * 365 days/year) + 17 days + 1 day

where "17" is the number of leap days and "1" is the day added to
compensate for the difference between 12-31 and 01-01.

Note that UCT (universal coordinated time) is synonymous with
Greenwich mean time (GMT).

INF: CTYPE Macros Function Incorrectly
Article ID: Q94323

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When an application that is linked to CRTDLL.LIB is compiled without
defining _MT and _DLL, the CTYPE.H family of macros will not operate
correctly.

To define _MT and _DLL on the CL386 command line, just add the following to
the command line:

 -D_MT -D_DLL

By adding these defines, the CTYPE macros will be properly initialized.

Additional reference words: 3.10 3.1

INF: Calling Conventions Supported by the 32-Bit Compiler
Article ID: Q89691
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

There are three calling conventions supported by the Windows SDK
32-bit compiler. They are C (_cdecl), Standard (_stdcall), and
Fastcall (_fastcall). The Pascal calling convention (_pascal), which
was supported by Microsoft's 16-bit compilers, is not supported.

The following table summarizes the calling conventions:

 _cdecl _stdcall _fastcall

 Arguments Pushed R to L Pushed R to L Note 3
 Stack cleaned up by Caller Callee Callee
 Naming convention Prepend _ Note 1 Note 2

 Note 1: _stdcall decorates the name by prepending an underscore (as
 in _cdecl) and then appending an at sign (@) and the decimal
 representation of the number of bytes to be pushed on the stack.
 All arguments are widened to a multiple of 4 bytes.

 Note 2: _fastcall decorates the name by prepending an at sign (@)
 and appending an at sign (@) and the decimal representation of the
 number of bytes to be pushed on the stack. All arguments are
 widened to a multiple of 4 bytes.

 Note 3: The first two arguments of size DWORD or smaller are placed
 in registers. The remainder of the parameters are pushed on the
 stack from right to left. This is not guaranteed to be true in
 future versions.

The default calling convention is _cdecl. If a function declared as
_fastcall or _stdcall takes a variable number of arguments, the _cdecl
calling convention is used.

Part of the _stdcall convention is that EAX, ECX, and EDX are not
preserved across function calls while EBX, ESI, EDI, and EBP are
preserved by the calling function.

MORE INFORMATION
================

The following samples illustrate the C calling convention from the
perspectives of the caller and the callee:

int _cdecl CFunc(int a, int b);

 (caller) (callee)

 push b _CFunc PROC NEAR
 push a .
 call _CFunc .
 add esp,8 .
 . RET
 . _CFunc ENDP
 .

int _cdecl CVarFunc(int a, ...);

 (caller) (callee)

 push ... _CVarFunc PROC NEAR
 push a .
 call _CVarFunc .
 add esp,4+... .
 . RET
 . _CVarFunc ENDP
 .

The following sample illustrates the Standard calling convention from
the perspectives of the caller and the callee:

int _stdcall StdFunc(int a, int b);

 (caller) (callee)

 push b _StdFunc@8 PROC NEAR
 push a .
 call _StdFunc@8 .
 . .
 . RET 8
 . _StdFunc@8 ENDP

The following sample illustrates the Fastcall calling convention from
the perspectives of the caller and the callee:

int _fastcall FastFunc(int a, int b);

 (caller) (callee)

 mov edx, b @FastFunc@8 PROC NEAR
 mov ecx, a .
 call _FastFunc .
 . .
 . RET 8
 . @FastFunc@8 ENDP

Additional reference words: 3.10

PRB: Debugging an Application Driven by MS-TEST
Article ID: Q100957

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOMS

When an application driven by MS-TEST is being debugged by WinDbg or
NTSD (for example, after an exception has occurred), both the
application and the debugger hang.

CAUSE

The debugger is hooked and ends up hanging.

RESOLUTION

It is not possible to use NTSD or WinDbg to debug an application that
is driven by MS-TEST. Use Dr. Watson (drwtsn32) instead. Note that you
must turn off Visual Notification.

STATUS

Microsoft has confirmed this to be a problem in Windows NT version
3.1. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

Additional reference words: 3.10

INF: Format for LANGUAGE Statement in .RES Files
Article ID: Q89822

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The syntax for the LANGUAGE statement in the resource script file is
given as follows on page 378 of the Win32 Preliminary SDK "Tools" manual:

 LANGUAGE major, minor

 major
 Language identifier. Must be one of the constants from WINNLS.H

 minor
 Sublanguage identifier. Must be one of the constants from WINNLS.H

For example, suppose that you want to set the language for the resources
in a file to French. For the major parameter, you would choose the
following constant from the list of language identifiers

 #define LANG_FRENCH 0x0c

and you would have the choice of any of the sublanguages that begin with
SUBLANG_FRENCH in the list of sublanguage identifiers. They are:

 #define SUBLANG_FRENCH 0x01
 #define SUBLANG_FRENCH_BELGIAN 0x02
 #define SUBLANG_FRENCH_CANADIAN 0x03
 #define SUBLANG_FRENCH_SWISS 0x04

RC.EXE does not directly place these constants in the .RES file. It uses
the macro MAKELANGID to turn the parameters into a WORD that corresponds
to a language ID.

More Information:

The following information is taken from the WINNLS.H file.

 A language ID is a 16-bit value that is the combination of a
 primary language ID and a secondary language ID. The bits are
 allocated as follows:

 +-----------------------+-------------------------+
 | Sublanguage ID | Primary Language ID |
 +-----------------------+-------------------------+
 15 10 9 0 bit

 Language ID creation/extraction macros:

 MAKELANGID - Construct language ID from primary language ID and
 sublanguage ID.
 PRIMARYLANGID - Extract primary language ID from a language ID.
 SUBLANGID - Extract sublanguage ID from a language ID.

The macros are defined as follows

 #define MAKELANGID(p, s) ((((USHORT)(s)) << 10) | (USHORT)(p))
 #define PRIMARYLANGID(lgid) ((USHORT)(lgid) & 0x3ff)
 #define SUBLANGID(lgid) ((USHORT)(lgid) >> 10)

Additional reference words: 3.10

INF: Microsoft NT C++ Is AT&T 2.1 Compatible
Article ID: Q94324

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Microsoft NT C/C++ Compiler is AT&T 2.1 compatible.

Additional reference words: 3.10 3.1

INF: Usage of the afx_msg Type
Article ID: Q94325

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Microsoft Foundation Classes (MFC) samples include the "afx_msg" type
in the declaration of all message processing functions. This string equates
to null in both the Windows 3.1 and Win32 AFXWIN.H header files.

The afx_msg type has no syntactic value; rather, it is a visual cue that
the function is used as a message handler. It is good practice to use this
type in derived classes.

Additional reference words: 3.10 Win3.1

INF: Tips for Writing Multiple-Language Scripts
Article ID: Q89865

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

To aid you in writing multiple-language resources, the Win32 development
system supports language scripts. To create a multiple language script,
first create a single-language script file (American English, for example),
and duplicate the translations in your script file. You need a complete
translation only once for each major language. Only those resources that
have differences between the major language and the sublanguage need be
included in the sublanguage areas of the script. The system will use the
main language resource if it doesn't find a resource for the sublanguage.

Sample Code

LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
<original script file>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_UK
<portions of script file that are different for UK>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_AUS
<portions of script file that are different for Australia>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH
<entire script file translated to French>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_SWISS
<portions of script file that are different for Switzerland>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_BELGIAN
<portions of script file that are different for Belgium>
LANGUAGE LANG_SPANISH,SUBLANG_SPANISH
<entire script file translated to Spanish>

Additional reference words: 3.10 windows NT

INF: Writing Multiple-Language Resources
Article ID: Q89866

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When you are writing multiple-language resources, the dialog box
identifiers need to be identical for each language instance, as
demonstrated below.

 #define DialogID 100

 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
 .
 .
 .
 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_FRENCH,SUBLANG_FRENCH

The FindResource() application programming interface (API) function is used
by the system to fetch the dialog box. FindResource() gets the locale
information for the process, then attempts to fetch the resource with that
language identifier using FindResourceEx(), the language-specific API
function for fetching resources. If FindResourceEx() fails to load the
language-specific dialog box, FindResource() then attempts to load the
neutral dialog box, which should fetch LANG_FRENCH,SUBLANG_FRENCH, if the
locale is SUBLANG_FRENCH_CAN or similar.

The LANGUAGE identifiers and the VERSIONINFO language identifiers should
also be identical. The code page for resources is always the Unicode code
page. The system will translate from Unicode to the required code page.

The preferred method of developing multiple-language resources is to
include a LANGUAGE statement for each language supported rather than using
the CODEPAGE, LANGUAGE identifier, and VERSIONINFO information. Although
the CODEPAGE information will work, the new method is easier to use.

INF: Using Communal Variables in MASM386
Article ID: Q94327

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

It is possible to create two object modules that share a communal variable.

More Information:

The MASM386 COMM statement can be used to establish communal variables
between modules. COMM declares a variable external and instructs the linker
to define the variable if it has not been explicitly defined in a module.

Below is an example that demonstrates how a variable can be initialized in
one module and at the same time be communal with another module.

MODULE1.ASM
===========

 PUBLIC X
 _DATA SEGMENT DWORD USE32 PUBLIC 'DATA'
 X DW 1234H

MODULE2.ASM
===========

 _DATA SEGMENT DWORD USE32 PUBLIC 'DATA'
 COMM X:WORD

MODULE1 merely defines X in the normal fashion and initializes it to 1234H.
MODULE2 declares X communal using the COMM statement. Please note that the
COMM statement is not required in MODULE1.

Additional reference words: 3.10 3.1

INF: Default Alignment of Structures and Classes
Article ID: Q94328

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Microsoft NT C Compiler aligns structures and classes on 32-bit
boundaries by default; however, this can be changed with the /Zp compiler
switch. The /Zp switch allows you to align structures and classes to a
specific byte boundary.

For example, the following aligns structures and classes on 1-byte
boundaries:

 CL386 -Zp1 test.c

For more information on -Zp or other compiler switches, see the Microsoft
Win32 "Tools" manual.

Additional reference words: 3.10 3.1

INF: Enabling Disk Performance Counters
Article ID: Q100289

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

By default, disk performance counters are not started. Therefore,
almost all of the disk metrics obtained will be zero. To enable the
disk performance counters, execute the following command and then
reboot the system:

 diskperf -y

DISKPERF.EXE is located in %SystemRoot%\system32.

The decision to avoid starting disk performance counters by default
was made for performance reasons.

Additional reference words: 3.10

PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32
Article ID: Q98888
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 Call GetWindowsSysDir() in the SETUP.MST file. The return value is
 C:\WINNT\SYSTEM\ instead of C:\WINNT\SYSTEM32\.

CAUSE
 Windows on Windows (WOW) returns the SYSTEM directory, not the
 SYSTEM32 directory, to 16-bit applications such as MS-SETUP. This
 is done for compatibility reasons.

RESOLUTION
 Determine whether the setup code is being run under WOW or Windows
 version 3.1 by checking the WF_WINNT bit (0x4000) in the return
 from GetWinFlags(). Choose either the return from
 GetWindowsSysDir() or <winows dir>\system32 as appropriate.

More Information:

Note that there are additional considerations for network installs for
Win32s, because the SYSTEM directory may not be a branch off of the
Windows directory.

Additional reference words: 3.10 3.1

PRB: Selecting Overlapping Controls in Dialog Editor
Article ID: Q90384

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 Create a dialog box using the Dialog Editor. Place a button onto the
 dialog box. Create a frame and place it so that it encompasses the
 button. It is not possible to select that button with the mouse.
 However, if the frame is created before the button and then moved or
 placed over the button, then it is possible to select either the frame
 or the button.

CAUSE
 This behavior is by design. When controls are overlapped, the control
 that is selected when the mouse is clicked is the one that comes last in
 Z-order.

 As a special case, it is possible to select a control placed
 "underneath" a group box.

RESOLUTION
 From the Arrange menu, choose Order/Group. This will bring up a dialog
 box. Change the Z-order of the button to be after that of the frame. The
 Z-order may also be changed by manually editing the resource file. The
 controls that are further down in the file will be "on top."

 Note: If the frame is selected and is on top of the button, pressing
 SHIFT+TAB selects the previous control, which will be the button. This
 does not allow the position of the control to be changed with the mouse;
 however, it does allow the text and size to be changed.

Additional reference words:

PRB: Data Section Names Limited to Eight Characters
Article ID: Q100292

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOMS

Data sections can be named by using #pragma data_seg. This method is
commonly used so that the named data sections can be shared using the
SECTIONS statement in the DEF file. However, if the length of the name
specified in the pragma exceeds eight characters, then the section is
not properly shared.

CAUSE

The cl386 compiler truncates the section name length to eight
characters because the Win32 Software Development Kit (SDK) linker
does not support sections with longer names. Therefore, the names
specified in the DEF file do not resolve to actual section names.

STATUS

The longer names require use of the COFF strings table, so the rewrite
is not trivial. When the linker in a future Microsoft C/C++ product
supports this, then the compiler will as well.

More Information:

Note that in addition, the first character of a section name must be a
period. Therefore, the section name, as specified in both the pragma
and the DEF file, can be a maximum of a period followed by seven
characters.

For more information on the shared named-data section, query on the
following words in the Microsoft Knowledge Base:

 specify and shared and nonshared and data and dll

Additional reference words: 3.10

INF: Retrieving the CMDIChildWnd Parent Window
Article ID: Q101184
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

This information applies to the Microsoft Foundation Class (MFC)
Library.

When creating a CMDIChildWnd, the parent of the multiple document
interface (MDI) window is a "MDICLIENT" control. The handle to the
parent frame window can be retrieved in the following way:

 hwnd =::GetParent(lpcreatestruct.hwndParent);

Alternatively, use the following

 CMDIFrameWnd* pFrame = (CMDIFrameWnd*)GetParentFrame();

to acquire a pointer to the parent MDI frame window object.

 NOTE: GetParent is declared to return a pointer to a CFrameWnd
 object, and therefore it is necessary to typecast the result to a
 CMDIFrameWnd object.

Additional reference words: 3.10

INF: MIPS Compiler Does Not Support __inline
Article ID: Q90503

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MIPS compiler does not support the __inline C++ construct. The compiler
doesn't specifically indicate this to the user; instead, the user typically
notices numerous syntax errors. The keyword is used in function prototypes,
so the syntax errors are often regarding the first curly brace ({) in the
first function declaration following the prototype. Search the source code
for __inline to determine whether this is the reason for the syntax errors.

To test whether __inline is the problem without searching the source, see
if the code compiles cleanly on an x86 system. If it does, yet several or
dozens of syntax error messages result when compiling on MIPs, using
__inline could be the problem.

Additional reference words: 3.10 3.1

INF: Memory Management Via Malloc()
Article ID: Q90531

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In the Microsoft C run-time for NT, malloc() and its related functions map
directly to the system heap routines. They don't do the sub-allocation that
they do under MS-DOS/Windows. In many ways, using the C run-time under NT
is the same as using the Win32 API because it calls the Win32 API directly.

The C run-time heap manager searches for the first available block of
memory that is large enough to satisfy the request. When more memory is
needed, the heap manager will grow the heap. When a block of memory is
freed, the manager checks the previous and following block to see whether
either or both can be combined with the newly freed block to form a
contiguous free block. In either case, freed memory is re-used if possible.

More Information:

Information such as block size and status (used or free) is kept in a
header in the first few bytes at the beginning of the block, not in a
separate location, such as a table.

Problems occur if you corrupt the header information of a block by writing
beyond the previous allocated block. When the block with the corrupted
header is freed, the heap manager will consider the memory that the header
happens to point to as the next block when it attempts to combine adjacent
free blocks. The system will crash with an exception in RtlExAllocateHeap
upon the next malloc or free involving this memory.

The blocks are contiguous, so overwriting one block when writing to a
different block is not considered writing outside the program's memory
space. The C run-time heap manager doesn't make sure that writes do not
extend beyond the end of an allocated block. This would be very time-
consuming considering how often the heap is used.

Note that the same problem can occur with APIs such as LocalAlloc() and
GlobalAlloc().

Additional reference words: 3.10 3.1

INF: Using Cout in an Application and DLL
Article ID: Q101185

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The standard output stream (cout) can be used in an application or
dynamic-link library (DLL) to display information. When using cout in
an application and a DLL simultaneously, special care is needed to
ensure that the text display is synchronized.

Because the cout text stream is buffered, text from a DLL may not
appear correct relative to text from the application. To correct this
problem, always use the endl manipulator when outputting text with
cout. Below is an example:

 cout << "Hello World" << endl;

The endl manipulator inserts a newline character and then flushes the
stream buffer. This ensures that text displayed from the application
and DLL is synchronized.

Additional reference words: 3.10 iostream

INF: Interpreting Executable Base Addresses
Article ID: Q101187

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

LINK32.EXE can be used to dump the portable executable (PE) header of
an executable file. Below is a fragment of a dump:

 7300 address of entry point
 7000 base of code
 B000 base of data
 ----- new -----
 10000 image base

The "image base" value of 10000 is the address where the program
begins in memory. The value associated with "base of code," "base of
data," and "address of entry point" are all offsets from the image
base.

Additional reference words: 3.10

INF: Calculating String Length in Registry
Article ID: Q94920

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When writing a string to the registry, you must specify the length of the
string, including the terminating null character (\0). A common error is to
use strlen() to determine the length of the string, but to forget that
strlen() returns only the number of characters in the string, not including
the null terminator.

Therefore, the length of the string should be calculated as:

 strlen(string) + 1

Note that a REG_MULTI_SZ string, which contains multiple null-terminated
strings, ends with two (2) null characters, which must be factored into the
length of the string. For example, a REG_MULTI_SZ string might resemble the
following in memory:

 string1\0string2\0string3\0laststring\0\0

When calculating the length of a REG_MULTI_SZ string, add the length of
each of the component strings, as above, and add one for the final
terminating null.

Additional reference words: 3.10 3.1

INF: Order of Object Initialization Across Translation Units
Article ID: Q101188

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The order of initialization of global objects is undefined across
translation units. For example, if your application consists of three
C++ modules and each module declares an object of xyz class, there is
no guarantee during program initialization which of these objects will
be constructed first.

In addition to not relying on the order of initialization, you should
not use one object's address in another object's initialization when
the two objects are contained in different translation units.

AT&T 2.1 does not define the order of initialization for global
objects across translation units. The order of initialization is
implementation-dependent.

Additional reference words: 3.10

INF: Changes to wsprintf/wvsprintf Formatting
Article ID: Q90834

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

To stay in compliance with ANSI standards and to remain consistent with the
C run-time sprintf routines, some changes have been made to the wsprintf
and wvsprintf routines in the way they interpret various formatting
characters. These changes affect only character and string formatting
specifiers.

The following table shows the format specifiers and how they're interpreted
by the wsprintf/wvsprintf routines:

 Specifier wsprintfA wsprintfW

 %c / %s CHAR / LPSTR WCHAR / LPWSTR
 %C / %S WCHAR / LPWSTR CHAR / LPSTR
 %hc / %hs CHAR / LPSTR CHAR / LPSTR
 %lc / %ls WCHAR / LPWSTR WCHAR / LPWSTR
 %wc / %ws WCHAR / LPWSTR WCHAR / LPWSTR

The explicit size specifiers ("h", "l", and "w") take precedence over the
case of the actual format specifier ("c" or "s"). Thus, wsprintfA(ansibuf,
"%hC", param1) means that param1 is interpreted as an ANSI character.

Two items to pay particular attention to:

1. %c and %s act as the generic specifiers and thus change meaning between
 wsprintfA and wsprintfW. Most code today that calls wsprintfW assumes
 that %c and %s always indicate ANSI. If you want ANSI, then use %hc and
 %hs.

2. The earlier %tc and %ts specifiers are no longer supported.

Additional reference words: 3.10 3.0

INF: %S, %B, %C, printf() Format Specifier Changes
Article ID: Q94921

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

In the next release of the Win32 Software Development Kit (SDK), in order
be compatible with ANSI C, the %S printf() format specifier used to print
counted STRINGs has been changed to %Z. In the new C run time, %S will be
equivalent to %ws.

Also, support for the %B and %C format specifiers has been removed (these
format specifies were once used to print bugcodes and status codes
symbolically, but have behaved similar to %X for the past two years).

The following table summarizes the changes:

 Old New
 String String
 ------ ------

 %wS %wZ
 %S %Z
 %lB %X
 %B %X
 %lC %X
 %C %X

Additional reference words: percent 3.10 3.1

INF: Getting Windows NT Executable Header Information
Article ID: Q91132

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The executable header information for MS-DOS, OS/2, and Windows executables
and DLLs has been provided by EXEHDR.EXE. The following command will get
the header information for a Windows NT executable (.EXE or .DLL file):

 link32 -dump -headers filename.{exe|dll}

Information about the exports and imports can be obtained through the
following commands:0

 link32 -dump -exports
 link32 -dump -imports

Additional reference words: 3.10 3.1

INF: WinMain() Arguments in Unicode
Article ID: Q90912

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The prototype for WinMain() is as follows:

 int PASCAL WinMain(
 HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow);

The third parameter is an LPSTR, which specifies an ANSI string. WinMain()
cannot be defined to accept Unicode input because there is no way for the
system to know whether or not the application wants Unicode at the time
WinMain() is called; the system knows once the application has registered a
window class.

To get the arguments in Unicode, use GetCommandLine().

Additional reference words: 3.10 3.1

INF: Using volatile to Prevent Optimization of try/finally
Article ID: Q91149

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The following is an example of a valid optimization that may take
programmers by surprise.

1. A variable (temp) used only within the try-except body is declared
 outside it, and therefore is global with respect to the try.

2. Assignment to the variable (temp) is in the program only for a possible
 side effect of doing a read memory access through the pointer.

For example:

 VOID
 puRoutine(PULONG pu)
 {
 ...
 ULONG temp; // Just for probing
 ...
 try {
 temp = *pu; // See if pu is a valid argument
 }

 except {
 // Handle exception
 }
 }

The compiler optimizes and eliminates the entire try-except statement
because temp is not used later.

If the value of temp were used globally, the compiler should treat the
assignment to temp as volatile and do the assignment immediately even if it
is overwritten later in the body of the try. The reasoning is that, at
almost any point in the try body, control may jump to the except (or an
exception filter). Presumably the programmer accessing the variable outside
the try wants to get the current (most recently assigned) value.

The way to prevent the compiler from performing the optimization is:

 temp = (volatile ULONG) *pu;

If a temporary variable is not needed, given the example, the read access
should still be specified as volatile, for example:

 *(volatile PULONG) pu;

Additional reference words: 3.10

INF: Postmortem Debugging Under Windows NT
Article ID: Q94924

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Win32 Software Development Kit (SDK) does not have a postmortem utility
designed to ship with the product. However, the system provides fundamental
support to enable postmortem analysis of processes and allows tool vendors
to create their own postmortem solutions.

A key feature provided in the system is the ability to start up a
debugger when an unhandled exception occurs. The debugger can attach
to the process after the exception has occurred.

In the first commercial release of Windows NT, a 32-bit version of Dr.
Watson is automatically run as a post-mortem debugger when unhandled
exceptions occur. The Dr. Watson log obtained from application
end-users can be useful to the developers of the application in
determining the cause of failure.

When the Win32 SDK is installed, the default post-mortem debugger is
changed to be WinDbg, so on the machines developers use to
develop/test their applications under development, the developer is
immediately given a WinDbg session to investigate the cause of failure
when an unhandled exception occurs.

The option also allows administrators to configure systems such that any
third-party utility or utility written in-house could be started. The
utility is exec'd with debugger/debugee relationship. The process address
space is retained and the debugger is set at the instruction causing the
unhandled exception.

Thus, this interface is not limited to debuggers, but to any postmortem
utility. Therefore, there is an opportunity for tool vendors to provide a
myriad of postmortem analysis utilities, some of which could be tied to
compiler vendor products (for symbolic dumps and so forth).

A postmortem utility could:

1. Dump memory image to disk for later analysis.
2. View/dump memory structures, memory maps, and so forth via
 VirtualQuery().
3. Study/dump the CPU state, coprocessor state, and so forth.
4. Take advantage of any application symbolic debugging information if
 present.

There are many other aspects to a postmortem utility that could be added.
Core dumps have additional features (such as system support for reloading)

that will not be provided in the Windows NT final release for this version,
but will be provided in a future release.

Additional reference words: 3.10 3.1 post-mortem 3rd

INF: Use of DLGINCLUDE in Resource Files
Article ID: Q91697

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Windows 3.1 SDK dialog editor needs a way to know what include file is
associated with a resource file that it opens. Rather than prompt the user
for the name of the include file, the name of the include file is embedded
in the resource file in most cases.

Embedding the name of the include file is done with a resource of type
RCDATA with the special name DLGINCLUDE. This resource is placed into the
.RES file and contains the name of the include file. The dialog editor
looks for this resource when it loads a .RES file. If this resource is
found, then the include file is opened also; if not, the editor prompts the
user for the name of the include file.

In some Windows 3.1 build environments, the dialog editor was used to
create dialogs that were placed in more than one .DLG file. These different
.DLG files were then included in one .RC file, which was compiled with the
resource compiler. Therefore, the resource file gets multiple copies of a
RCDATA type resource with the same name, DLGINCLUDE, but the resource
compiler and dialog editor don't complain.

In the Win32 SDK, changes were made so that this resource has its own
resource type; it was changed from an RCDATA-type resource with the
special name, DLGINCLUDE, to a DLGINCLUDE resource type whose name can
be specified. The dialog editor would look for resources of the type
DLGINCLUDE.

Changes were made to CvtRes so that it gives an error if it finds a
resource that has the same type, name, and language as another
resource in the file. We are being more strict about the need for
resources to be unique in the Win32 SDK than the Windows 3.1 SDK. This
is good because there was never any guarantee at run time as to which
of the two or more resources would be returned by LoadResource().

This means that some applications being ported to Windows NT give an error
when their resources are compiled because they have duplicate RCDATA type
resources with the same name (DLGINCLUDE). This error is by design. The
workaround is straightforward: delete all the DLGINCLUDE RCDATA type
resource statements from all the .DLG files.

Finally, because it does not make sense to have the DLGINCLUDE type
resources in the executable, CvtRes will strip them out so that they don't
get linked into the EXE.

Additional reference words: 3.10 3.1

INF: Warning 0505: No Modules Extracted from 'FILENAME.LIB'
Article ID: Q92503

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The linkers that shipped with the preliminary releases of the Win32
SDK for Windows NT issue the following warning if they are given a library
that is not used during linking

 warning 0505: no modules extracted from 'filename'.lib

There is no way to disable the generation of this warning. To avoid the
warning, do not give the linker the names of libraries that cause it to be
generated. The ability to disable the warning is being considered for a
later version of the linker.

More Information:

The SDK sample makefiles all use constants defined in \H\NTWIN32.MAK to
specify the libraries that should be included in the link line for a
particular kind of application. The constants are:

 conlibs guilibs psxlibs
 conlibsmt guilibsmt
 conlibsdll guilibsdll

The MFC samples use MFC\SAMPLES\NTSAMPLE.MAK. The definition of CONLIBS and
GUILIBS differs between NTWIN32.MAK and NTSAMPLE.MAK:

 conlibs: libc.lib ntdll.lib kernel32.lib netapi.32
 guilibs: libc.lib ntdll.lib kernel32.lib user32.lib gdi32.lib \
 winspool.lib comdlg32.lib advapi32.lib olecli32.lib olesvr32.lib \
 shell32.lib

 conlibs: libc.lib ntdll.lib kernel32.lib
 guilibs: libc.lib ntdll.lib kernel32.lib user32.lib gdi32.lib \
 winspool.lib comdlg32.lib

Most of the MFC samples link without error using the NTWIN32.MAK
definitions of CONLIBS and GUILIBS, but will warn that WINSPOOL.LIB was not
used. About half the samples do not need COMDLG32.LIB either. The CTRLTEST,
MINSVR, MINSVRMI, OCLIENT, OSERVER, and TEMPLDEF examples require libraries
not in the NTWIN32.MAK definition of GUILIBS.

Additional reference words: 3.10 3.1

PRB: GP Fault in OS/2 Subsystem
Article ID: Q92508

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A general protection fault (GP fault) can occur in the OS/2 subsystem if
you have a corrupted registry entry for the subsystem.

A workaround for this is to start REGEDIT and edit
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft. Select OS/2 Subsystem for NT and
press the DEL key. Now restart NT. Just logging off isn't sufficient; you
must reboot. The next time you try to start an OS/2 application, the OS/2
server will rebuild the registry item you deleted.

SYMPTOMS
 An application that causes a GP fault in the OS/2 subsystem displays the
 following error information:

 General Protection error occurred
 An OS/2 program caused a protection violation.
 The program will be terminated.

Additional reference words: 3.10 3.1 GP-fault

INF: Cross-Platform Development Under Windows NT
Article ID: Q93213

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

There are currently three hardware platforms for which Win32 applications
can be written; they are the Intel x86 (386 and higher), MIPS, and the DEC
Alpha. How does one support development across these platforms?

Binary compatibility across these hardware platforms is not a viable
alternative. Therefore, Win32 offers source compatibility. This means that
developers may create versions of their applications for each CPU with
simply a re-compile.

However, cross-compilation tools have not been written at this time. Thus,
to develop separate executables for each hardware platform, developers must
compile them within that hardware platform.

It is important not to confuse source compatibility across hardware
platforms (x86, MIPS, Alpha) with binary compatibility across application
execution environments (Win32, Win16). Win32 does support binary
compatibility between different application execution environments upon the
same hardware platform, through emulation. For example, a Win16 executable
image (x86) can be run without modification on an x86 Windows NT machine,
and with the support of the Win32s DLLs and VxDs, x86 Win32 executable
images may be run on an x86 Windows 3.1 machine. Currently, development and
debugging options across environments are limited during Windows NT early
stages.

Additional reference words: 3.10

PRB: Internal Compiler Error msc1.cpp, Line 555
Article ID: Q93217

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

PROBLEM ID: SDK9212001

SYMPTOMS
 The following error is given by the Preliminary SDK compiler (CL386.EXE):

 Internal Compiler Error msc1.cpp, line 555

CAUSE
 This error may indicate that the compiler binaries are corrupted.

RESOLUTION
 If you encounter this error, compare the compiler binary files with
 those on the CD, to verify that file corruption is not the cause.

Additional reference words: 3.10 3.1

PRB: LINK32.EXE(): Extended Error - File Not Found
Article ID: Q93291

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 During linking, the following error occurs:

 LINK32.EXE(): Extended error - File not Found.

CAUSE
 This error may be caused by the TMP environment variable failing to
 point to an existing directory.

STATUS
 Microsoft has confirmed this to be a problem with LINK32.EXE. We are
 researching this problem and will post more information here as it
 becomes available.

Additional reference words: 3.10 3.1

INF: Using the -ROM Linker Switch
Article ID: Q96014
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The linker (LINK32.EXE) included with the Win32 Software Development
Kit (SDK) supports a -ROM switch for creating ROM images. When this
switch is used, the executable header information created is different
from a standard executable. For MIPS, the fixups are also different.

The ROM code and data points can be specified using the -BASE linker
switch. The load address for the code and data can also be specified.
These addresses don't need to be contiguous.

Control is transferred to the program through the ENTRYPOINT address
in the header. It is up to the boot loader (or your own code) to
switch into protected mode.

Additional reference words: 3.10 3.1

INF: Win32 .DEF File Usage in Applications and DLLs
Article ID: Q96374
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Certain aspects of Win32 .DEF file usage are the same as Win16 .DEF
file usage; however, there are a number of important changes. Most of
this information can be found under the Microsoft Library Manager
(LIB) help in the help file "Compiler Tools Help," or in the help file
"Building Applications and DLLs."

The .DEF files are not necessary to build an application (because
callbacks don't need to be exported), but they can be used. However,
the linker will not directly accept a .DEF file. The .DEF file is
passed to the Library Manager. The Library Manager creates an export
module (.EXP file), which needs to be linked with the application. Due
to the nature of this step, it is necessary to include at least one
export in the .DEF file.

Certain changes can be made without the .DEF file. If you need to set
section attributes, you can use the linker -SECTION option. If you
need to embed a description or a version string, you can use #pragma
comment in the source files. Note that there currently is no support
for the STUB statement either via the command line or via a .DEF file.
The stub is hard-coded into the linker. This functionality is being
considered for inclusion in either the final release of the Win32
Software Development Kit (SDK) or in Microsoft Visual C++ for Windows
NT.

In Win32 development, a .DEF file is primarily used to export
functions from a dynamic-link library (DLL). Again, the linker will
not accept the .DEF file. Use the Library Manager to create the .EXP
file to be linked with the DLL and to create an import library (.LIB
file), which will be linked with any application or DLL that wants to
use the DLL functions.

More Information:

The process of using a .DEF file to export functions requires that the
EXPORTS listed in the .DEF file exactly match their functions'
decorated names. The possible types of decorated names include:

1. __cdecl, where names are decorated with an underscore prefix
2. __stdcall, where names are decorated with an underscore prefix and an
 @<number> suffix, where <number> is the number of bytes in the
 argument list
3. C++, where the decorated name can be looked up in the output of
 link32 -dump -symbols

The Library Manager handles the name decoration for you if you pass it
the object files on the command line. There is a special pass during
which the Library Manager takes the undecorated name from the .DEF
file, searches the object files, and provides the decorated name in
the export module generated.

Note: For C++ overloaded functions or if two classes contain member
functions that have the same name, the librarian cannot determine
which decorated name to use and will issue an error. In this case, the
fully decorated name must be provided in the .DEF file. There is no
way to specify a scope resolution operator in the .DEF file.

For a sample makefile, see the SELECT or SPINCUBE sample.

Additional reference words: 3.10

INF: Win32 SDK Sample Build Warnings
Article ID: Q102114

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

Microsoft's goal was that the Win32 Software Development Kit (SDK)
samples would compile cleanly at warning level 3 (-W3). However, due
to time constraints, there are warnings that occur when building two
of the samples on both x86 and MIPS. These warnings are as follows:

MSTOOLS\SAMPLES\SDKTOOLS\ANIEDIT

 anicmd.c(768) : warning C4047: 'argument' : 'long ' differs in levels
 of indirection from 'void *'
 anicmd.c(768) : warning C4024: 'SendMessageA' : different types for
 formal and actual parameter 4

MSTOOLS\SAMPLES\SNMP\SNMPUTIL

 snmputil.c(463) : warning C4101: 'requestId' : unreferenced local
 variable

Note that these warnings do not prevent the sample applications from
running correctly, and therefore they can be ignored.

One error you may encounter is the following:

Q_A\SAMPLES\SHAREMEM

 sharemem.cpp(204) : error C2106 : "=" : left operand must be l-value

This error is encountered if you rename SHAREMEM.C to SHAREMEM.CPP.

The following changes should be made to avoid these warnings:

 snmputil.c(79) : delete line

 AsnInteger requestId;

 anicmd.c(768) : typecast 4th parameter of SendMessage()

 SendMessage(hwndCaller, AIM_SETCHILAPP, 0, (LPARAM) hwnd);

 sharemem.cpp(204) : typecast the right-hand side of the equation

 MapView = (LONG *) MapViewOfFile (..);

Additional reference words: 3.10

INF: LINK32 Implements New Switch: -adjust:#
Article ID: Q102115

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The version of LINK32 that is contained in the retail version of the
Win32 Software Development Kit (SDK) implements a new switch,
-adjust:#.

Previous beta linkers had a hard-coded limit for the number of
iterations that are performed to do end-of-page code adjustments. The
number of iterations can now be adjusted with this switch.

MORE INFORMATION
================

This switch should be used when the following error is encountered:

 error 101: cannot adjust code

Start with -adjust:20 and raise the number until the link is
successful.

This error has been known to occur when linking large objects under
MIPS. The R4000 and R4400 chips force us check that certain sequences
of instructions do not occur at a page boundary. These sequences cause
the system to take a page fault on crossing the page boundary, which
the OS cannot resolve (however, this is not a problem with Windows
NT). To prevent this from happening, the linker searches for these
sequences in each code section in each object and moves the section up
a DWORD at a time until there are no problems or until the number of
maximum iterations is reached.

Additional reference words: 3.10

INF: Size Comparison of 32-Bit and 16-Bit x86 Applications
Article ID: Q97765
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

It is expected that a 32-bit version of an x86 application (console or
GUI) will be larger than the 16-bit version. Much of this difference
is due to the flat memory-model addressing of Windows NT. For each
instruction, note that the opcodes have not changed in size, but the
addresses have been widened to 32 bits.

In addition, the EXE format under Windows NT (the PE format) is
optimized for paging; EXEs are demand-loaded and totally mappable.
This leads to some internal fragmentation because protection
boundaries must fall on sector boundaries within the EXE file.

The MIPS (or any RISC) version of a Win32 application typically will
be larger and require more memory than its x86 counterpart.

Additional reference words: 3.10

INF: CTRL+C Exception Handling Under WinDbg
Article ID: Q97858
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

An exception is raised for CTRL+C only if the process is being
debugged. The purpose is to make it convenient for the debugger to
catch CTRL+C in console applications. For the purposes of this
article, the debugger is assumed to be WinDbg.

When the console server detects a CTRL+C, it uses CreateRemoteThread()
to create a thread in the client process to handle the event. This new
thread then raises an exception IF AND ONLY IF the process is being
debugged. At this point, the debugger either handles the exception or
it continues the exception unhandled.

The "gh" command marks the exception as having been handled and
continues the execution. The application does not notice the CTRL+C,
with one exception: CTRL+C causes alertable waits to terminate. This
is most noticable when executing:

 while((c = getchar()) != EOF) - or - while(gets(s))

It is not possible to get the debugger to stop the wait from
terminating.

The "gn" command marks an exception as unhandled and continues the
execution. The handler list for the application is searched, as
documented for SetConsoleCtrlHandler(). The handler is executed in the
thread created by the console server.

After the exception is handled, the thread created to handle the event
terminates. The debugger will not continue to execute the application
if Go On Thread Termination is not enabled (from the Options menu,
choose Debug, and select the Go On Thread Termination check box). The
thread and process status indicate that the application is stopped at
a debug event. As soon as the debugger is given a go command, the dead
thread disappears and the application continues execution.

More Information:

There are three cases where CTRL+C doesn't cause the program to stop
executing (instead it causes a "page down"):

1. When CTRL+C is already being handled.

2. When the debugger is in the foreground and a source window has the
 focus (both must be true).

3. When the CTRL+C exception is disabled (through the Debugger

 Exceptions dialog box).

This follows the convention of the WordStar/Turbo C/Turbo Pascal
editor commands.

Additional reference words: 3.10

INF: Debugging DLLs Using WinDbg
Article ID: Q97908
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

This article describes the process of debugging dynamic-link libraries
(DLLs) under WinDbg. As a further example, debugging File Manager
extensions is discussed in the "More Information" section in this
article.

The application and the DLL must be built with certain compiler and
linker switches so that debugging information is included. These
switches can be found in the $(cdebug) and $(ldebug) macros,
respectively, which are defined in NTWIN32.MAK.

Note: It is important to disable optimization with -Od or locals will
not be available in the locals window and line numbers may not match
the source.

The application is loaded into WinDbg either by specifying "windbg
<filename>" on the command prompt or by starting WinDbg from the
program group and specifying <filename> in the Program Open dialog box
(from the Program menu, choose Open). Note that <filename> is the name
of the application, not the DLL. It is not necessary to specify the
name of the DLL to be debugged.

The DLL is loaded either when execution of the application begins or
dynamically through a call to LoadLibrary(). In the first case, simply
press F8 to begin execution. All DLLs and symbolic information are
loaded. To trace through the DLL code, breakpoints can be set in the
DLL using a variety of methods:

 - From the Debug menu, choose Breakpoints. The dialog box is Program
 Open.

 -or-

 - Open the source file and use F9 or the "hand" button on the
 toolbar.

 -or-

 - Go to the Command window and type:

 bp[#] <Options>

 <Options>:

 addr break at address
 @line break at line

In the case that the DLL is dynamically loaded, pressing F8 causes all
other DLLs and symbolic information to load. The same methods
described above can be used to set breakpoints; however, the user will
get a dialog box indicating that the breakpoint was not instantiated.
After the call to LoadLibrary() has been executed, all breakpoints are
instantiated (it is possible to note the color change if the DLL
source window is open) and will behave as expected.

More Information:

To set a breakpoint in a DLL that is not loaded, specify the context
when setting the breakpoint. The syntax for a context specifier is:

 {proc, module, exe}addr

 -or-

 {proc, module, exe}@line

Example: {func, module.c, app.exe}0x50987. The first two parameters
are optional, so {,,app.exe}0x50987 or {,,app.exe}func could be used
instead.

For example, assume that we are trying to debug a File Manager
extension that has been built with full debugging information. The
procedure to debug the extension is as follows:

1. Open a Command window.
2. Start WinDbg WINFILE.
3. Set a breakpoint on FmExtensionProc().
4. At the Command window, type "g" and press ENTER. The debugger will
 continue executing the program form the point where it stopped
 (which could be from the beginning, at the breakpoint, and so on).

WinDbg will start WINFILE and when FmExtensionProc() is executed,
WinDbg will break into the WINFILE process.

Additional reference words: 3.10

INF: Debugging Console Apps Using Redirection
Article ID: Q102351

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

To redirect the standard input (STDIN) for a console application named
APP.EXE from a file named INPUT.TXT, the following syntax is used:

 app < input.txt

However, the following syntax will not work when attempting to debug
this application with STDIN redirected:

 windbg app < input.txt

To debug the application as desired, use

 windbg cmd /c "app < input.txt"

which will allow windbg to debug whatever goes on in the cmd window. A
dialog box will be displayed that says "No symbolic Info for
Debuggee." This message refers to CMD.EXE; dismiss this dialog box.
When the child process (APP.EXE) is started, the command window will
read "Stopped at program entry point." To continue, type "g" at the
command window. Note that APP.EXE will begin executing, then you can
open the source file and set breakpoints.

This technique is also useful when debugging an application that
behaves differently when run with a debugger than it does when it is
run in the command window.

Additional reference words: 3.10

PRB: Building POSIX Applications Under the March Beta
Article ID: Q97927
--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

To build POSIX applications with the March beta release of the Win32
SDK for Windows NT, the reference to KERNEL32.LIB must be removed from
NTWIN32.MAK, and the SETNVPSX.BAT file in the \MSTOOLS\POSIX directory
must be run in order for the build environment variables to be set up
correctly.

Additional reference words: 3.10

INF:
Article ID: Q98287
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The code below fails with error C2440:

 'return' : cannot conver from 'const char *' to 'char *':

Code

 char * test () const { return &chArray[0]; }

A member function is const and this member function receives a const
pointer, which means that all members of the class are const; thus,
the error is returned correctly.

The characters in the array are also const, and therefore the type of
a pointer to the array is "const char *". If you want the member
function to be const, you need to make the return type const as well.

Additional reference words: 3.10

INF: Watching Local Variables That Are Also Globally Declared
Article ID: Q98288
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Consider the following program:

int x = 1;
int y = 2;

main() {
 int x = 2;
 x++;
 y++;
}

Before you step into main, if you set watchpoints on x and y, the
Watch window will display a value for y but for x will say "Expression
cannot be evaluated." To see the value for x, use ::x and x will
evaluate to the local x in main once you've stepped into main.

More Information:

When debugging an application, the X86 C++ evaluator is loaded. Given
this, you can use the scope resolution operator in a watch statement
to view a hidden global variable. Without the use of the scope
resolution operator, there is no way (short of watching it in a memory
window) to watch a hidden global variable.

Additional reference words: 3.10

INF: Migrating Windows NT Program Groups and the Desktop
Article ID: Q105298
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

There are a variety of ways of migrating groups under Windows NT. All
of the desktop information is located in the registry. By selectively
saving and restoring particular keys, you may restore your program
groups and desktop.

Note that modifying the registry is a potentially risky operation;
data loss is possible. You may want to back up your profile, which is
located in <SYSTEMROOT>\SYSTEM32\CONFIG and is usually a combination
of the username, some digits, and no extension. Your profile is locked
by the system when you are logged in to that account, however, so you
must copy it from another account or from MS-DOS.

The following is the procedure to save the desktop information:

1. Make sure you have Administrative access.

2. Run REGEDT32.EXE.

3. Select HKEY_CURRENT_USER\Program Groups.

4. From the Registry menu, choose Save Key.

5. Save the key (save as PROGRAM.REG).

6. Repeat steps 3-5 to save the following key:

 HKEY_CURRENT_USER\
 Software\
 Microsoft\
 Windows NT\
 Current Version\
 Program Manager\
 Groups
 (save as GROUPS.REG)

8. Repeat steps 3-5 to save the following key:

 HKEY_CURRENT_USER\Control Panel
 (save as CTRLPNL.REG)

PROGRAM.REG and GROUPS.REG have the information necessary to restore
the program groups, and CTRLPNL.REG contains the information necessary
to restore the desktop.

Procedure to restore registry keys:

 1. Back up your profile.

 2. Run REGEDT32.EXE.

 3. Select the key you want to restore (see steps 3, 6, and 7 above).

 4. Write down the exact name, spelling, and location of the key.

5. From the Edit menu, choose Delete and verify deletion of the key.

 6. Select the parent key of the key you just deleted.

 7. From the Edit menu, choose Add Key and type in the exact name of the
 deleted key. Don't worry about the Class field. Choose OK. The key
 should reappear in its position, but it will be empty.

 8. Select the key that you just created.

 9. From the Registry menu, choose Restore.

10. Find and select the file in which you saved the old key (for example,
 PROGRAM.REG). The saved key will be restored in the position that
 you selected.

11. Repeat for all keys you want to restore. When you are finished,
 exit REGEDT32 and log off. When you log back on, the groups and
 desktop should be restored.

Additional reference words: 3.10

INF: Conforming to ANSI C Standards
Article ID: Q98841
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Names starting with a single underscore and an uppercase letter, or
names beginning with a double underscore and a lowercase letter, can
be used in a "conforming" C program translated by a "conforming"
implementation; these names, and the meaning and syntax associated
with each name, are reserved by the implementation. ANSI C also
specifies the requirements for a "strictly conforming" program, in
which these constructions are not permitted.

Other compilers may ignore such names that exist in the implementation
space, or produce any desired behavior, and the program can still be
defined as conforming.

The Microsoft C compiler does not have a strictly conforming mode of
operation. As a result, if a developer uses another vendor's compiler,
which is a strictly conforming implementation, the Microsoft headers
will not work. In this case, the vendor of the strictly conforming
compiler must provide the appropriate headers for the system.

Because the standard headers are part of the implementation, there is
no requirement for the header mechanisms provided by one
implementation to be interoperable with the mechanisms of another.
Another implementation MUST provide its own compatible set of standard
headers and their associated inclusion mechanisms.

Additional reference words: 3.10

PRB: Default Section Alignment Is 0x10000 (64K) by Default
Article ID: Q98889

--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 The help for the Win32 Software Development Kit (SDK) linker
 indicates that the default section alignment is set to 0x1000 (4K).
 By using link32 -dump -header on an executable, it is possible to
 see that the alignment is set to 0x10000 (64K) by default.

RESOLUTION
 To manually set the alignment to 4K, use -align:0x1000. In versions
 of the Beta Win32 SDK that are later than the March release, the
 NTWIN32.MAK file uses the -align: switch to force alignment to 4K.

STATUS
 Microsoft has confirmed this to be a problem with the March Win32
 SDK linker (LINK32).

More Information:

Although the application loads with 64K alignment, the extra pages of
supposedly committed memory are not really committed. If you analyze
them using VirtualQuery(), you will find that they are marked as
MEM_COMMIT and PAGE_NO_ACCESS. Although this typically means that the
pages are committed and have backing store somewhere (most likely the
system pagefile), they actually do not.

In the next release, these extra committed pages will be marked as
MEM_RESERVE and will occupy nothing more than address space in the
process. Therefore, although it appears that the application takes a
large amount of memory to load, only the pages that are needed are
committed and no extra backing store is allocated.

Additional reference words: 3.10 3.1

PRB: Cannot Compile from Win32 SDK M Editor (MEP.EXE)
Article ID: Q98918

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 The Win32 Software Development Kit (SDK) M Editor compile function
 uses the correct extmake line and spawns the compiler correctly,
 but does not produce the desired result. The terminating beep is
 issued, but no messages appear in the <compile> pseudo file and no
 object file is produced.

STATUS
 Microsoft has confirmed this to be a problem in the Win32 SDK
 Microsoft Editor.

Additional reference words: 3.10 3.1

INF: UNICODE and _UNICODE Needed to Compile for Unicode
Article ID: Q99359

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

To compile code for Unicode, you need to #define UNICODE for the Win32
header files and #define _UNICODE for the C run time. These #defines
must appear before the #include <WINDOWS.H> and any #included C
run-time headers. The leading underscore indicates ANSI-deviance from
the C standard. Because the Windows header files are not part of any
standard, this is allowable.

Additional reference words: 3.10

INF: Specifying Filenames Under the POSIX Subsystem
Article ID: Q99361

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

When specifying filenames under POSIX, use

 //c/subdir/executable.exe

to specify c:\SUBDIR\EXECUTABLE.EXE. If you fail to use this format,
you will receive ENAMETOOLONG as the errno.

Additional reference words: 3.10

PRB: WM_QUERYOPEN Incorrectly Prototyped in WINDOWSX.H
Article ID: Q99362
--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

SYMPTOM
 When MAKELRESULT is used with the WM_QUERYOPEN message cracker, a
 compiler error is issued.

CAUSE
 In the March Beta release of the Win32 Software Development Kit
 (SDK), the message cracker for WM_QUERYOPEN in WINDOWSX.H is
 incorrect. The second parameter to MAKELRESULT is missing, thus
 causing the compiler error when it is used. The second parameter
 should be 0L.

RESOLUTION
 Developers using this message cracker should make the change
 locally in WINDOWSX.H until this file is updated to reflect this
 change.

Additional reference words: 3.10

INF: Using SetThreadLocale() for Language Resources
Article ID: Q99392

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1

Summary:

Under Windows NT, each resource loading application programming
interface (API) is based on the thread's locale. Each thread has a
locale--usually the default system locale.

You can change the thread locale by calling SetThreadLocale(). To
obtain the language resource you want, just set the thread locale to
the locale you want, then call the normal resource loading API.

Additional reference words: 3.10

INF: Compile Errors Caused by Missing Option -D_X86_
Article ID: Q99516

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

When compiling Windows applications on an Intel x86 system, the
following errors are generated if the symbol _X86_ is not defined:

 C:\MSTOOLS\h\winnt.h(1235) : error C2061: syntax error : identifier
 'PCONTEXT'

 C:\MSTOOLS\h\winnt.h(1236) : error C2143: syntax error : missing ';'
 before '}'

 C:\MSTOOLS\h\winbase.h(615) : error C2282: 'PCONTEXT' is followed by
 'LPCONTEXT' (missing ','?)

 C:\MSTOOLS\h\winbase.h(617) : error C2282: 'PEXCEPTION_POINTERS' is
 followed by 'LPEXCEPTION_POINTERS' (missing ','?)

 C:\MSTOOLS\h\winbase.h(1409) : error C2061: syntax error : identifier
 'lpContext'

 C:\MSTOOLS\h\winbase.h(1416) : error C2059: syntax error : '*'

 C:\MSTOOLS\h\winbase.h(1416) : error C2061: syntax error : identifier
 'lpContext

Certain sections of WINNT.H and WINBASE.H are conditionally compiled
with:

 #ifdef _X86_

Therefore, failing to compile with the -D_X86_ switch causes these
errors to occur.

More Information:

For recommendations regarding which compile and link options to use,
check the makefiles included with the samples. These makefiles use the
macros defined (and described) in \MSTOOLS\H\NTWIN32.MAK.

Additional reference words: 3.10

PRB: Running Early Apps Results in Error w/ RtlExAllocateHeap
Article ID: Q103241

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SYMPTOMS
========

The following error is received

 The procedure entry point RtlExAllocateHeap could not be
 located in the dynamic link library ntdll.dll.

when running applications on Windows NT version 3.1 that were built
with a version of the Win32 SDK earlier than the .404 (March) release.

CAUSE
=====

Applications built with the .404 (March) SDK or later should have no
problems running on Windows NT version 3.1. Applications built with
earlier SDKs are not guaranteed to run on the final release Windows
NT, even if they ran on the .404 release of Windows NT.

WORKAROUND
==========

The best way to work around the problem is to completely rebuild the
application with the latest tools. If this is not possible, the other
alternative is to patch the old executable with B2FIX.EXE, which can
be found in Library 1 of the MSLNG32 forum. The original intent of
this program is to patch Visual C++ 1.0 so that it can be used under
Windows NT.

MORE INFORMATION
================

Note that not all of the March SDK tools were built with the March
SDK. In particular, running the March SDK cl386 compiler will cause
this error. It is necessary to use the final SDK update or Visual C++
for Windows NT to create 32-bit applications on Windows NT.

Additional reference words: 3.10

INF: Undocumented Warning C4509
Article ID: Q103242

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

The following warning was added to the Win32 SDK compiler and the
Visual C++ for Windows NT compiler:

 warning C4509: nonstandard extension used: '<function>' uses SEH and
 '<variable>' has destructor

The warning was added in anticipation of a future compiler that will
support C++ exception handling (C++ EH). At that time, it will not be
possible to mix C++ EH and structured exception handling (SEH).
Because destructors will involve C++ EH so that they can be called in
an exception unwind, it will not be possible to have a local object in
a function that uses SEH.

Currently, we do not destruct objects in an exception unwind.

MORE INFORMATION
================

Code that produces the warning described above, where <function> is
MyFunction and the variable is mc, resembles the following:

 struct MyClass {
 MyClass();
 ~MyClass();
 };

 void MyFunction()
 {
 MyClass mc;

 try {
 //...
 }

 finally
 {
 //...
 }
 }

Additional reference words: 3.10

INF: Example of Importing Functions
Article ID: Q103244
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

The linker does not take a .DEF file directly. To use EXPORTS, it is
standard to build an export module (.EXP) to link with the
dynamic-link library (DLL), and to use an import library (.LIB) to
link with any application or DLL that uses this DLL.

There are alternatives to an import library. One alternative is to use
LoadLibrary() and GetProcAddress() to call an exported DLL function.
Another alternative is to build an import module (.IMP) using the
steps described below:

1. Create the .DEF file. The following is based on the SELECT example.
 Note that it is necessary to decorate the names and include one
 dummy export. The __stdcall functions have an appended "@<number>",
 where <number> is the number of bytes in the parameter list for the
 function. The linker automatically handles the underscore, which is
 prepended to __cdecl and __stdcall function names.

 NAME Demo

 EXPORTS
 DemoWndProc@12

 IMPORTS
 select.StartSelection@16
 select.UpdateSelection@16
 select.EndSelection@8
 select.ClearSelection@12

2. Build the .IMP file:

 $(PROJ).imp: $(PROJ).def
 $(implib) -machine:$(CPU) \
 -def:$(PROJ).def \
 -out:$(PROJ).lib

3. Link the .IMP file into the application:

 $(PROJ).exe: $(PROJ).obj $(PROJ).rbj $(PROJ).def $(PROJ).imp
 $(link) $(linkdebug) $(guiflags) \
 -out:$(PROJ).exe $(PROJ).obj $(PROJ).rbj \
 $(PROJ).imp $(guilibsdll)

MORE INFORMATION

================

If building a DLL, another interesting technique is to use forwarders.
For example, the following

 LIBRARY test

 EXPORTS
 MyFunc = prvtdll.DllFunc

will expose MyFunc() as an export for TEST.DLL. However, the loader
will actually fix up the reference at load time to point to DllFunc in
PRVTDLL.DLL. This method involves no additional code.

Another way to provide a forwarder is to write a stub function, which
you do export, that forwards the reference for you. On DLL
PROCESS_ATTACH, do LoadLibrary(prvtdll), then GetProcAddress() on
DllFunc. In your forwarder function, just call through with the
arguments passed to you.

Additional reference words: 3.10

PRB: Error in Win32 SDK Install Program MANUAL.BAT
Article ID: Q103245
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SYMPTOMS
========

When installing the Win32 SDK with an unsupported CD-ROM, Microsoft
recommends booting MS-DOS and running MANUAL.BAT. This results in the
following error:

 invalid switch - /i

WORKAROUND
==========

One workaround is to copy the MANUAL.BAT file to the hard disk and
remove the /i switches on the xcopy command lines. For example, if you
copied the file to C:\MANUAL.BAT and wanted to install the Win32 SDK
with the unsupported CD-ROM to drive c, the next step would be to
switch back to the CD-ROM and run C:\MANUAL.BAT C:.

In addition, a corrected copy of the MANUAL.BAT file was uploaded to
Library 8 of the MSWIN32 forum on CompuServe:

 SETUP.ZIP/Bin Bytes: 10507, Count: 0, 02-Sep-93
 Last:**Never**

 Title : Manual Bat Installation Helper Tools
 Keywords: SETUPSDK MANUAL SETUP FIX TOOL

 This file contains: MANUAL.BAT & SETUPSDK.EXE

 MANUAL.BAT is the fixed version of same-named file found on the
 Win32 SDK CD_ROM. This is the same file as found in MANUAL.ZIP as
 found in this forum.

 The SetupSDK tool will allow you to selectively create the various
 Program Manager groups and environment variables as are normally
 created using the "Graphical Installation" method. This tool can
 also be used to create these groups and variables for different
 user accounts on your local machine. This tool runs under Windows
 NT only.

Additional reference words: 3.10

PRB: Destructor for Class in a DLL Called Twice
Article ID: Q103860

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SYMPTOMS
========

The application has the following properties and generates an access
violation at exit:

 - There is a C++ class in a dynamic-link library (DLL)
 - Objects of this class type use dynamic memory
 - The application was built using the SDK tools

CAUSE
=====

Under the following conditions, the destructor for the class in the
DLL will be called twice, and therefore the memory will be freed
twice, causing the access violation.

RESOLUTION
==========

This problem does not occur when using Visual C++ for Windows NT.

MORE INFORMATION
================

This problem can be easily demonstrated by adding a CString to the
DLLTrace sample program.

Additional reference words: 3.10

INF: Choosing the Debugger That the System Will Spawn
Article ID: Q103861
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

With Windows NT version 3.1, it is possible to have the system spawn a
debugger whenever an application faults. The capability is controlled
by the following Registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 AeDebug

This key contains the following values:

 Auto
 Debugger

If the value of Auto is set to "0" (zero), then the system will
generate a pop-up window, and if the user chooses Cancel, spawn the
debugger that is specified in the Debugger value. If the value of Auto
is set to "1", then the system will automatically spawn the debugger
that is specified in the Debugger value.

After installing Windows NT 3.1, the Debugger value is set to DRWTSN32
-p %ld -e %ld -g and the Auto value is set to 1.

If the Win32 SDK is installed, then the Debugger value is changed to
<MSTOOLS>\BIN\WINDBG -p %ld -e %ld and the Auto value is set to 0.

MORE INFORMATION
================

The DRWTSN32 debugger is new and is a post-mortem debugger similar in
functionality to the Windows 3.1 Dr. Watson program. DRWTSN32
generates a log file containing fault information about the offending
application. The following data is generated in the DRWTSN32.LOG file:

 - Exception information (exception number and name)
 - System information (machine name, user name, OS version, and so forth
 - Task list
 - State dump for each thread (register dump, disassembly, stack walk,
 symbol table)

A record of each application error is recorded in the application

event log. The application error data for each crash is stored in a
log file named DRWTSN32.LOG, which by default is placed in your
Windows directory.

Additional reference words: 3.10

INF: Symbolic Information for System DLLs
Article ID: Q103862
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

The debugging information for the system dynamic-link libraries (DLLs)
is contained separately in files with a .DBG extension. The Win32 SDK
setup, SETUPSDK, will install the following .DBG files by default in
<SYSTEMROOT>\SYMBOLS\DLL:

 ADVAPI32.DBG OLECLI32.DBG
 COMDLG32.DBG OLESVR32.DBG
 CRTDLL.DBG RASAPI32.DBG
 DLCAPI.DBG RPCNS4.DBG
 GDI32.DBG RPCRT4.DBG
 INETMIB1.DBG SHELL32.DBG
 KERNEL32.DBG USER32.DBG
 LMMIB2.DBG VDMDBG.DBG
 LZ32.DBG VERSION.DBG
 MGMTAPI.DBG WIN32SPL.DBG
 MPR.DBG WINMM.DBG
 NDDEAPI.DBG WINSTRM.DBG
 NETAPI32.DBG WSOCK32.DBG
 NTDLL.DBG

Note that these files are not installed by the alternative Win32 SDK
install method, MANUAL.BAT. Therefore, WinDbg will warn that symbol
information cannot be found for each of the system DLLs called by the
debuggee.

These .DBG files can be manually installed by copying them from the
SDK CD. For x86, they are located in \SUPPORT\DEBUG\I386\SYMBOLS\DLL.
For MIPS, they are located in \SUPPORT\DEBUG\MIPS\SYMBOLS\DLL. Note
that there are more than 200 .DBG files in each of these directories.

MORE INFORMATION
================

There are also debugging versions of the system DLLs that can be
installed by using SWITCH.BAT, which is located on the CD in
\SUPPORT\DEBUGDLL. Refer to page 11 of the "Getting Started" manual
and the batch file itself for more information.

Additional reference words: 3.10

INF: Cannot Load <exe> Because NTVDM Is Already Running
Article ID: Q103863
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

The version of WinDbg that is included in the Win32 SDK version 3.1
can debug 16-bit applications running on Windows NT, under the Win16
VDM (virtual DOS machine), NTVDM.

It is a requirement that NTVDM cannot already be running, and
therefore when debugging a 16-bit application, no other 16-bit
applications can be running. If NTVDM is running, you will get the
following error message:

 Cannot load <exe> because NTVDM is already running

To terminate NTVDM, run PView, select NTVDM, and choose "Kill
Process." Note that there may be two NTVDM processes. The one that you
want to terminate has one thread for each Win16 application (plus a
few more).

The Windows NT WinLogon is set up to automatically start WoWExec,
which automatically starts the Win16 VDM. This behavior can be changed
by removing WoWExec from:

 HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Shell

Additional reference words: 3.10

PRB: Win32 SDK and VC++ NT Help Files Are Incompatible
Article ID: Q104378

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The Windows Help files that accompany the Win32 SDK (that is,
API32WH.HLP) are incompatible with Windows Help files from the Visual
C++ for Windows NT product.

SYMPTOMS
========

Choosing the Search Plus button from within Visual C++ for Windows NT
Windows Help with a copy of a help file from the Win32 SDK produces a
"Missing or Old Index" error.

CAUSE
=====

The version of API32WH.HLP for Visual C++ for Windows NT is indexed
with several other help files to make it easy to search for terms and
keywords in several files at once. The Visual C++ Setup program writes
the name of the new index file into the Windows NT registry, and this
name is different than the name of the index file included with the
Win32 SDK. If you subsequently open API32WH.HLP from the Win32 SDK and
use the full-text search feature (the Find button), you will receive
an error message about an old or missing index file.

RESOLUTION
==========

If you have previously installed the Win32 SDK for Windows NT, after
installing Visual C++ for Windows NT, you should use only the version
of the Win32 application programming interface (API) help file
(API32WH.HLP) installed with Visual C++ for Windows NT. The Setup
program installs this file by default in the \HELP subdirectory under
the directory that you have chosen for Visual C++, or in a help
subdirectory that you explicitly choose.

For more information about moving from the Win32 SDK to Visual C++ for
Windows NT, see the MIGRATE.HLP help file.

Additional reference words: 3.10

INF: Development Tools Do Not Accept Unicode Text
Article ID: Q106065
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Neither the Win32 SDK tools or Visual C++ (VC++) support Unicode text.
In fact, the C/C++ Language specification says that the source files
are to be written in 7-bit ANSI.

For example, language-specific resources cannot be specified in
Unicode in the .RC file because RC does not accept the Unicode text.
Although the message compiler has flags for Unicode, the flags are not
implemented.

To convert to and from Unicode text, use the UCONVERT utility included
in your MSTOOLS\BIN directory. The source for UCONVERT is in
MSTOOLS\SAMPLES\SDKTOOLS\UCONVERT.

The long term solution that Microsoft is working on are Resource
Localization Tools and other methods that will allow the user to
localize the strings in a GUI editor, running on the target machine.

Note that it is possible to specify Unicode escapes in L-quoted
strings. The following is quoted from "Common Statement Parameters" in
RC.HLP:

 By default, the characters listed between the double quotation
 marks are ANSI characters and escape sequences are interpreted as
 byte escape sequences. If the string is preceded by the L prefix,
 the string is a wide-character string and escape sequences are
 interpreted as two-byte escape sequences that specify Unicode
 characters. If a double quotation mark is required in the text, you
 must include the double quotation mark twice or use the \" escape
 sequence.

Another alternative is to use user-defined resources and include a
binary (Unicode) file.

Additional reference words: 3.10

INF: Viewing Globals Out of Context in WinDbg
Article ID: Q105583

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

When viewing global variables (either with the ? command or via the
Watch window) and the variables go out of context, their values
become:

 CXX0017 Error: symbol not found

An example of this is when a common dialog box is open in the
application. If you break into an application that is inside
COMDLG32.DLL and try to do a ?gVar, where gVar is a global variable in
the application, WinDbg will not find the symbol because the context
is wrong. To view the value of gVar in MYAPP, use the following:

 ?{,,myapp}gVar

WinDbg will then have no trouble locating the symbolic information.

Additional reference words: 3.10

PRB: RC Does Not Support __DATE__ or __TIME__
Article ID: Q105584
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The resource compiler (RC) included with the Win32 Software
Development Kit (SDK) does not support the predefined symbols __DATE__
or __TIME__. Previous versions of the resource compiler accepted these
symbols.

CAUSE
=====

It is not intended that the resource compiler support these symbols.
Previous versions of RC used the C/C++ 7.0 preprocessor, which
supported these symbols.

RESOLUTION
==========

If code that uses this symbol is in a header file, place the following
around the individual statements that use them:

 #ifdef RC_INVOKED

Additional reference words: 3.10

PRB: Unable to Freeze One Thread in WinDbg
Article ID: Q105585

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The Notes section of the "Set thread" entry of the WinDbg Help file
states:

 In any of the above listed states, a thread may be frozen. If a
 thread is at a breakpoint, no threads in that process will run. If
 a thread is at a breakpoint and then frozen, it will still be
 considered stopped until the thread is continued (at which time it
 will still be considered frozen).

If you set a breakpoint in a multithreaded application and freeze a
thread after the breakpoint is hit, all threads stop, as expected. If
you then choose GO on the frozen thread, the message in the Command
window is "Thread is still frozen," which seems fine but all other
threads remain blocked until the thread is unfrozen.

CAUSE
=====

The implementation of ContinueDebugEvent() uses the thread that is
being continued to do some of its work. If the thread is suspended, it
cannot run; therefore, the ContinueDebugEvent operation is not
finished until the thread is resumed.

STATUS
======

Microsoft has confirmed this to be a limitation in WinDbg.

Additional reference words: 3.10

PRB: WinDbg FIND Dialog Box Slows Down the System
Article ID: Q105586

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

Leaving the WinDbg FIND dialog box displayed after searching for some
string causes the CPU to go to 100 percent busy, making the system
very slow.

RESOLUTION
==========

Choosing Cancel in the FIND dialog box allows the system to return to
normal.

STATUS
======

Microsoft has confirmed this to be a problem in WinDbg.

Additional reference words: 3.10

INF: Debugging the Win32 Subsystem
Article ID: Q105677
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The instructions on page 1-18 of Part II of the Win32 "Programmer's
Guide" included with the Win32 Device Driver Kit (DDK) says to use
NTSD -d -p -1 to attach to the Win32 subsystem process and enable
debugging of its user-mode drivers. This results in the error:

 NTSD: cannot debug PID -1
 error = 5

To enable this procedure to work properly, change the GlobalFlag value
under:

 HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager

Remove the flag 0x00080000 from 0x211a0000 to make it 0x21120000. The
0x00080000 flag disables the ability to debug CSRSS.EXE (the client
server run time subsystem), which is specified by the "-p -1"
parameter.

It is also possible to debug CSRSS using "WinDbgRm -c -p-1" instead of
NTSD. Make sure that WinDbgRm defaults to debugging using TLPIPE.DLL
as its transport layer, then run "windbgrm -c -p-1" on the debuggee.

On the debugger machine, make sure that CSRSS.EXE and any dynamic-link
libraries (DLLs) that you are debugging in association with it are in
the same directory, and run WinDbg. To set the transport DLL, choose
Debug from the Options menu, choose Transport DLLs, and set the
transport DLL to TLPIPE. Set the host name entries to be the machine
name of the debuggee.

Additional reference words: 3.10

INF: Differences Between the Win32 SDK and 32-Bit VC++
Article ID: Q105679
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The following is a list of items included in the retail Win32 SDK that
are not included in the 32-bit Edition of Visual C++ (Intel only):

Tools

 WinDbg/WinDbgRM
 Process Walker
 Working Set Tuner (WST)
 WinObj
 Setup Toolkit
 Microsoft Test
 Software Compatibility Test (SCT)
 API Profilers: CAP and WAP
 Symedit
 masm386
 Font Editor

Documentation

 LM API Reference (LMAPI.HLP)
 SNMP Programmer's Reference (SNMP.TXT)
 Generic Thunks (GENTHUNK.TXT)
 File Formats (CUSTCNTL.TXT, ENHMETA.TXT, PE.TXT, RESFMT.TXT)

Samples

 BNDBUF MFEDIT
 BOB (named EXITWIN in VC++) MIDIMON
 CDTEST MINREC
 CPL MSGTABLE
 DYNDLG NTFONTS
 GUIGREP NTSD
 LARGEINT PDC
 LOGGING RESDLL
 LOWPASS REVERSE
 MANDEL SCRNSAVE
 MAPI SEMAPHOR
 MAZELORD SPINCUBE
 MCITEST WINNET

Other

 Device Driver Kit (DDK) headers and libraries
 Checked build of Windows NT
 RPC Toolkit
 POSIX headers and libraries
 Microsoft Foundation Classes (MFC) 1.0

The following is a list of items included in the 32-bit Edition of
Visual C++ that are not included in the retail Win32 SDK (Intel only):

Tools

 Visual Workbench/AppStudio/Wizards
 bscmake
 Pharlap TNT DOS-Extender
 Spy++
 Source Profiler
 CodeView for Win32S

Samples

 BOUNCE
 CVTMAKE
 EXITWIN (named BOB in the SDK)

Other

 MFC 2.0

MORE INFORMATION
================

The preliminary Win32 SDK contained the compiler tools, while the
retail Win32 SDK does not. In addition, the preliminary Win32 DDK was
available separately, while the retail DDK is bundled with the retail
SDK.

The Win32 SDK has a separate "Win32s Programmer's Reference," while
VC++ has the same chapters as part of the "Programming Techniques"
manual.

There are tools whose names have changed and tools that are no longer
needed. The SDK linker is LINK32, the VC++ linker is LINK. The SDK
librarian is LIB32, the VC++ librarian is LIB. CVTRES existed in the
SDK to convert the .RES file produced by RC so that it could be used
by the linker, while VC++ has this functionality built into its
linker. These changes may affect your makefiles.

For more information on switching from the Win32 SDK to 32-bit VC++,
see the VC++ file MIGRATE.HLP.

Additional reference words: 3.10

INF: Listing the Named Shared Objects
Article ID: Q105764
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Included with the final retail product is an object viewer utility
called WinObj that be used to list named objects, devices,
dynamic-link libraries (DLLs), and so forth. To find objects such as
pipes, memory, and semaphores, start WinObj and select the folder
BaseNamedObjects.

Additional reference words: 3.10

INF: Additional Remote Debugging Requirement
Article ID: Q106066

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The printed and online documentation for remote debugging with
WinDbgRm fail to mention one requirement. The binaries must be in the
same drive and directory on both the target machine and the
development machine.

WinDbg also expects to find the source files in the same directory in
which the the binary file was built, but will browse for the source if
it is not found in this location. WinDbg will automatically locate the
source if the files are specified to the compiler with fully qualified
paths.

Additional reference words: 3.10

PRB: Problems with the Microsoft Setup Toolkit
Article ID: Q106382
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

1. When the /zi option is used with the Win32 DSKLAYT2.EXE to provide
 compression, it causes an access violation.

2. The Win32 Setup Toolkit does not contain a setup bootstrapper to
 copy the needed setup files to a temp drive and run the Setup
 program. Setup runs from floppy disks.

3. Install programs for applications that may run on Win32s must be
 created with the 16-bit version of the Setup Toolkit if the
 installation program will install Win32s. However, the 16-bit
 DSKLAY2.EXE cannot read the version information in a Win32 binary.

4. The Win32 DSKLAYT.EXE only shows 8.3 names in the list box.

RESOLUTIONS
===========

1. The fix for this problem is available in the Alpha SDK Update. This
 product contains Alpha development tools as well as updates to the
 x86 and MIPS components.

 Note that COMPRESS.EXE has been updated to use a better compression
 algorithm, and therefore /zi is no longer recommended for best
 compression. The option has been kept for compatibility reasons.

2. The bootstrapper is not necessary in a 32-bit environment. It is
 required for Windows because it is not possible to remove the
 floppy disk of a currently running Win16 application (the resources
 could not all be preloaded and locked). If you want to use a
 bootstrapper for compatibility, a 32-bit version is available on
 CompuServe.

3. If a Win32s installation is provided on a separate disk, the
 install program can be developed with the Win32 Setup Toolkit.

4. The program is actually a 16-bit program, and therefore it can
 display only the 8.3 name. Use 8.3 names for the source names and
 specify that the files be renamed (using the long names) when they
 are installed.

Additional reference words: 3.10

INF: Win32s Stacks Limited to 128K
Article ID: Q93547

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 applications running under Win32s are limited to a maximum of
128K of stack space.

Additional reference words: 3.10

INF: Description of Win32s API
Article ID: Q83520

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The following is intended as an introduction to Win32s.

MORE INFORMATION
================

General Overview

Win32s is an API (application programming interface) intended for
development for both Windows 3.1 (hereafter referred to as Win16) and
Win32 environment. The purpose of Win32s is to provide an API to
developers, which will allow binary-compatible code across both
environments.

Win32 consists of the Win16 API stretched to 32 bits, plus the
addition of new API functions that offer new functionality. Win32s
contains a subset of the Win32 API, function stubs for the Win32 API
functions that Win16 will not support, and new API to support the
universal thunk (UT). Among the new features gained from Win32 are
structured exception handling (SEH), FP emulation, memory-mapped
files, named shared memory, and sparse memory. ALL the Win32 API
functions are included in Win32s; however, those that are not
supported will return an error code. For details on which API are
supported under Win32s, refer to the entries in the help file "Win32
API Reference."

When you call a Win32s API function, two options should be allowed:

 - Option A: Your code should allow for a successful return from the
 function call.

 - Option B: Your code should allow for an unsuccessful return from
 the function call.

For example, if the code is running under Windows 3.1 and the function
call is made to one of the API functions in the subset supported on
Windows 3.1, then the call returns successfully and option A is
executed. If the call is made while running under the Windows NT
environment, the call again returns successfully and option A should
be executed. However, if running under Windows 3.1 and a Win32s API
function is called that is unsupported by Windows 3.1 (this is one of
the Win32s function stubs), then an error code is returned and option

B should be executed.

If, for example, option A were using a CreateThread() call, then
option B would be alternative code, which would handle the task using
a single-thread solution. The list of APIs that may return error codes
on Windows 3.1 include:

 beziers
 enhanced metafiles
 mutex
 overlapped I/O
 paths
 semaphores
 threads
 Winnet APIs
 world coordinate transforms

Architecture

An application for Win32 using the Win32s toolkit will find some of
its API functions serviced within a 32-bit VxD, and some of its API
functions serviced by the 32-bit DLLs (dynamic-linked libraries). In
general, "base" functionality will go to the VxD, and the Win16 API
function equivalents will go to the DLLs.

Applications for Win32 cannot use Interrupt XX functionality;
therefore, the Win32s VxD has Win32 entries for each Interrupt 21 and
various other Interrupt XX (BIOS) calls. The Win32 memory management
API functions are directly implemented in the Win32s VxD (32-bit
memory management cannot be mapped to 16-bit reasonably) and the
Interrupt XX equivalents are mapped back to the virtualized MS-DOS.

The Win32s DLLs "thunk" back to Win16 when an application for Win32
makes a call, so the Win32s DLL 32-bit parameters are copied from the
32-bit stack to a 16-bit stack, and the 16-bit entry point is called.
Note that you are allocated Window handles only up to 0x0000FFFF, as
expected. However, do not assume this because it will not be true when
the same binary is run under Win32.

There are other semantic difference between Windows 3.1 and Win32.
Windows 3.1 will run applications for Win32 nonpreemptively in a
single, shared address space, while Windows NT runs them preemptively
in separate address spaces. It is therefore important that you test
your application for Win32 on both Windows 3.1 and Win32.

If you need to call 16-bit functionality from 32-bit code, you may do
this using universal thunks under Win32s, RPC, or other client-server
techniques. DDE, OLE, the clipboard, metafiles, and bitmaps can be
used between Win16 and Win32 applications on both Windows 3.1 and
Windows NT. For a description of UT, see the "Win32s Programmer's
Reference."

32-Bit Compatibility

Win32s offers 32-bit compatibility on Windows 3.1; therefore, it will

offer a speed improvement over Win16 applications running under Win32.
However, the actual speed improvement varies with each application
because it depends on how often you cross the thunk layer. Each call
using a thunk is no more than 10 percent slower than a call not using
a thunk.

Win32s on Windows 3.1 has 32-bit drivers (VxDs), some of which call to
16-bit file systems (MS-DOS in virtual mode), and some of which
directly implement functionality (Win32s memory management). Win32s on
Windows 3.1 also has a 32-bit preemptive kernel (Windows enhanced
mode) and 16-bit graphics and windowing (GDI and USER).

Additional reference words: 3.10

INF: Use 16-Bit .FON Files for Cross-Platform Compatibility
Article ID: Q100487

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The AddFontResource() function installs a font resource in the GDI
font table. Under Windows NT, the module can be a .FON file or a .FNT
file. Under Windows 3.1, the module must be a .FON file. When using
Win32s, AddFontResource() passes its argument to the Win16
AddFontResource, and therefore .FON files should be used for
portability.

In addition, when running under Windows NT, the module can be either a
32-bit "portable executable" or a 16-bit .FON file. However, if the
same Win32 executable is run under Win32s, the call to
AddFontResource() fails if the *.FON is not in 16-bit format.
Therefore, for compatibility across platforms, use 16-bit *.FON files.
These can be created using the Windows 3.1 Software Development Kit
(SDK).

Additional reference words: 3.10

INF: Support for Sleep() on Win32s
Article ID: Q100713

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The Win32 application programming interface (API) documentation
indicates that Sleep() is supported on Win32s. It is important to
note, however, that the behavior of Sleep() on Win32s is not the same
as it is under Windows NT.

Under Win32s, Sleep() calls Yield(). The Windows version 3.1 Yield()
function yields only if the message queue is empty; therefore, Sleep()
cannot be relied on to do anything. Use a PeekMessage() loop to do
idle time processing.

Additional reference words: 3.10

INF: Win32s Translated Pointers Guaranteed for 32K
Article ID: Q100833

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

Translated pointers are guaranteed to be valid only for 32K, rather
than 64K, which selectors are usually limited to. This limitation is
for performance reasons.

Selectors are tiled every 32K. A 0:32 pointer can be quickly
translated into a 16:16 pointer, which will be valid for a minimum of
32K. In other words, the offset portion of the 16:16 pointer is not
guaranteed to be 0 (zero) when translated. As a result, even though
the translated selectors have a limit of 64K, the offset passed to the
16-bit side may be as large as 32K-1.

The alternative is to create a selector for each and every
translation, which is very slow.

MORE INFORMATION
================

For any given address, there are two selectors that point to it, but
only one has a limit less than 32K:

 +-------+-------+-------+-------+-------+-------+
 |Selector 2(64K)|Selector 4(64K)|Selector 6(64K)|
 +-------+-------+-------+-------+-------+-------+-------+
 |Selector 1(64K)|Selector 3(64K)|Selector 5(64K)| |
 +-------+-------+-------+-------+-------+-------+-------+
 | 32K | 32K | 32K | 32K | 32K | 32K | 32K |
 +-------+-------+-------+-------+-------+-------+-------+

Currently, 16-bit and 32-bit applications share the same global data
space; therefore, it is possible to share a buffer of up to 64K in
size with a far pointer or more than 64K with a huge pointer by doing
the following:

1. Do a GlobalAlloc() on the 32-bit side.
2. Copy the data.
3. Send the handle to the 16-bit side.
4. Get a pointer to the data on the 16-bit side by using GlobalLock().

The translated pointer is valid until the memory is freed. In the
future, however, 16-bit and 32-bit applications may not share the same
global data space. Therefore, the recommendation is to use a buffer

that is passed to UTRegister().

Additional reference words: 3.10

INF: Calling a Win32 DLL from a Windows 3.1 Application
Article ID: Q97785
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

A Windows version 3.1 application can call a Win32 dynamic-link
library (DLL) under Win32s using Universal Thunks.

The following are required components (in addition to the Windows 3.1
application and the Win32 DLL):

 - A 16-bit DLL that provides the same entry points as the Win32 DLL.
 This serves as the 16-bit end for the Universal Thunk. The
 programmer must also include code that will detect whether the
 32-bit side is loaded.

 - A Win32 DLL that sets up the Universal Thunk. This serves as the
 32-bit end of the Universal Thunk. This DLL is supported only under
 Win32s.

 - A Win32 EXE that loads the 32-bit DLL described above.

The following diagram illustrates how the pieces fit together:

 ----------- ----------- ---------
 | Win32 EXE |-->| Win32 DLL |<->| Win32 |
 32-bit | (stub) | | (UT) | | DLL |
 ----------- ----------- ---------
 /|\ /|\
 -----------------|--------|-------------------------
 | \|/
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (UT) |
 --------- ------------

MORE INFORMATION
================

The load order is as follows: The Windows 3.1 application loads the
16-bit DLL. The 16-bit DLL checks to see whether the 32-bit side has
been initialized. If it has not been initialized, then the DLL spawns
the 32-bit EXE (stub), which then loads the 32-bit DLL that sets up
the Universal Thunks with the 16-bit DLL. Once all of the components
are loaded and initialized, when the Windows 3.x application calls an
entry point in the 16-bit DLL, the 16-bit DLL uses the 32-bit
Universal Thunk callback to pass the data over to the 32-bit side.
Once the call has been received on the 32-bit side, the proper Win32

DLL entry point can be called.

Note that the components labeled Win32 DLL (UT) and Win32 DLL in the
diagram above can be contained in the same Win32 DLL. Remember that
the code in the Win32 DLL (UT) portion isn't supported under Windows
NT, so this code must be special-cased if the DLLs are combined.

For more information, please see the Win32s "Programmer's Reference."

Additional reference words: 3.10 reverse universal thunk

INF: Win32s Message Queue Checking
Article ID: Q97918
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 applications that are designed to run with Win32s need to check
the message queue through a GetMessage() or PeekMessage() call to
avoid locking up the system. With Windows NT this is not a problem
because the input model is desynchronized. That is, each thread has
its own input event queue rather than having one queue for the entire
system. In a synchronous input model, one application can block all of
the others by allowing the single system queue to fill up with its
messages. With Windows NT, an application that lets its input queue
fill up will not affect other applications.

Additional reference words: 3.10

PRB: _getdcwd() Returns Incorrect Information Under Win32s
Article ID: Q98286
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS
========

The following code segment using the C run-time library routine
_getdcwd() always returns the root:

 _getdcwd (3, cBuf, MAX_PATH);
 MessageBox (hWnd, cBuf, "Drive 3 <C drive>", MB_OK);

CAUSE
=====

The C run-time library routine _getdcwd() returns incorrect
information for the current directory under Win32s.

RESOLUTION
==========

The following code fragments work fine under Win32s:

 _getdcwd (0, cBuf, MAX_PATH);
 MessageBox (hWnd, cBuf, "Drive 0 <default drive>", MB_OK);

 -or-

 GetCurrentDirectory (sizeof (cBuf), cBuf);
 MessageBox (hWnd, cBuf, "SCD", MB_OK);

MORE INFORMATION
================

Running the following sample to display the current directory of
drives C and D under Windows NT properly displays the full path of the
drive. Running the sample under Win32s always displays the root
("C:\", "D:\").

Sample Code

 #include <direct.h>
 ...

 status = _getdcwd(3, szPath, MAX_PATH); // drive 3 == C:
 if (status != NULL) {
 MessageBox(hWnd, szPath, "Current working directory for C:",

 MB_OK);
 }

 status = _getdcwd(4, szPath, MAX_PATH); // drive 4 == D:
 if (status != NULL) {
 MessageBox(hWnd, szPath, "Current working directory for D:",
 MB_OK);
 }
 ..

Additional reference words: 3.10
KBCategory:
KBSubcategory:

PRB: GetVersion() Returns Invalid Value Under Win32s
Article ID: Q98723
--
The information in this article applies to:

 - Beta Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 In Win32s version 1.0, GetVersion() returns a value of 0x80000A3f,
 which equates to 3F.0A--Win32s version 61.10.

CAUSE
 An internal build number was OR'ed into the low word rather than
 the high word of the value returned for the version.

RESOLUTION
 This bug only affects applications that ship with Win32s version
 1.0. Applications that plan to ship Win32s version 1.0 applications
 can check the return value and translate it to the correct value.

Additional reference words: 3.1 3.10 1.00 1.0

INF: Debugging Win32s Applications
Article ID: Q102430

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

To start debugging a Win32s application, make sure that it runs
correctly under Windows NT. Use either WinDbg or NTSD to track down
any problems.

Then, install the debugging libraries for Windows 3.1 and the debug
version of Win32s. Hook the machine to another machine running a
terminal emulator and watch for any warnings that are issued. Be sure
to select the Win32sDebug flags carefully--selecting too many will
generate more information than you may care to see; selecting too few
may cause you to miss important information and warnings.

If you need to debug on Win32s, there are currently two options:

 - Use wdeb386 (note that this method is very tricky).

 - Use remote WinDbg (WinDbgRm) if you are not familiar with using a
 kernel debugger. This method requires two machines: a Win32s
 machine to run the application and WinDbgRm and a Windows NT
 machine to run WinDbg.

If you have Microsoft Visual C++ for Windows NT, CodeView for Win32s
is an additional option. CodeView for Win32s is a user-level debugger;
remote debugging is not necessary, and therefore CodeView for Win32s
does not require a second machine.

MORE INFORMATION
================

When performing remote debugging, make sure that the cable is set up
exactly as specified in the Win32s Programmer's Reference. The
WinDbgRm from Win32s 1.0 does not support software flow control, so it
is very important that the hardware flow control is set up properly.
If it is not set up correctly, you will have problems as the buffers
overflow.

In later versions of WinDbg, XON/XOFF (software) flow control is
supported, which means that the standard 3-wire cable can now be used,
although the default is still hardware handshaking (5-wire cable). To
enable XON/XOFF, you must specify the XON flag in the serial transport
parameters on both WinDbg and WinDbgRm.

To enable XON/XOFF on WinDbgRm:

1. Select Options to bring up the Transport dynamic-link library (DLL)
 dialog box.

2. Select the serial transport and make any needed modifications to
 the communications port or baud rate parameters.

3. Place the XON flag at the end of the Parameters box. For example,
 "COM1:19200 XON". Note that the space is needed.

To enable XON/XOFF on WinDbg:

1. Select Options/Debug DLLs.

2. Select the proper serial transport layer.

3. Choose the Change button.

4. Add XON to the end of the Parameters line: "COM1:19200 XON".

It is very important that both sides of the debugger use the same
protocol. If they do not, both debuggers will probably hang.

Additional reference words: 3.10

INF: GetCommandLine() Under Win32s
Article ID: Q102762
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

Under Win32s, GetCommandLine() includes the full drive/path of the
executable, while under Windows NT GetCommandLine() does not include
the full path.

When programs are run from the Program Manager or the File Manager on
Windows 3.1, they are spawned using the full path. As a result,
argv[0] will have the complete path. When a Win32s application is
spawned by a 16-bit application, Windows detects that the application
is a Win32s application. The full path is passed to Win32s regardless
of whether or not WinExec() was invoked with the full path. As a
result, 32-bit applications receive the full path.

When a 32-bit application is spawned from a 32-bit application, the
32-bit kernel passes the information as given by the parent process
[that is, if a 32-bit program is started via CreateProcess() from
another Win32 application, argv[0] will contain the path that the
spawning application passed in].

Additional reference words: 3.10

INF: Win32s Cannot Support _environ in DLLs
Article ID: Q105680
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The _environ variable is a pointer to the strings in the process
environment, and is used by getenv() and _putenv(). The _environ
variable cannot be supported in Win32s dynamic-link libraries (DLLs)
because per-process data is not available. It is not possible to
represent the unique environment of each application in this
situation.

Attempting to use _environ in a DLL under Win32s in an application
that was linked with CRTDLL results in the following error:

 The procedure entry point "_environ_dll" could
 not be located in the Dynamic Link Library
 "CRTDLL.dll".

Instead, use GetEnvironmentStrings() and GetEnvironmentVariable().

Additional reference words: 3.10

INF: Debugging Universal Thunks
Article ID: Q105756
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

The general recommendation for an application targeted for Win32s is
to debug it under Windows NT, then make sure that the application
works under Win32s. However, Universal Thunks are not supported on
Windows NT, so it is not possible to debug applications that use the
Universal Thunk.

To debug across the Universal Thunk, you can use WDEB386, which is
available with the Windows 3.1 Software Development Kit (SDK). If you
are not familiar with WDEB386, you may find it simpler to use other
methods. In that case, be sure to install the debug version of Windows
3.1 and the debug version of Win32s and enable suitable notifications
for Win32s (unimplemented functions and messages, verbose, and so
forth). You may find OutputDebugString() useful for displaying extra
information.

For more information on WDEB386, please see the Knowledge Base article
"Tips On Installing WDEB386." For information on installing the debug
version of Windows, please see your Windows SDK documentation.

Additional reference words: 3.10

INF: Using Windows Sockets Under Win32s and WOW
Article ID: Q105757
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Win32s versions 1.1 and later provide a thunking layer for Windows
Sockets. A 16-bit Windows Sockets 1.1 package must be installed on the
Windows machine. Otherwise, the system will report that WINSOCK.DLL
was not found. Windows NT provides a versions 1.0- and 1.1-compliant
WOW (Windows on Win32) thunking layer.

There are a number of vendors that sell Windows Sockets packages.
Windows Sockets support is available from Microsoft for LAN Manager
version 2.2 for MS-DOS and Windows 3.1 at no additional cost. Similar
support is also being shipped in "Microsoft TCP/IP for Windows For
Workgroups" and the "Microsoft Network Client."

There are two Internet mailing lists for Windows Socket programming
information. The following is information on how to subscribe as
of this date (10/93):

 Send mail to listserv@sunsite.unc.edu with a body that has
 SUBSCRIBE WINSOCK <your_full_internet_email_address>. If you want
 to be on the winsock hackers mailing list, substitute
 WINSOCK_HACKERS for WINSOCK in a separate piece of email.

Additional reference words: 3.10

INF: Win32s and Windows NT Timer Differences
Article ID: Q105758
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Under Windows NT, timers are system objects; as such, they are not
owned by an application. SetTimer() can be called from within one
application with a handle to a window that was created by a different
application. This application would process the WM_TIMER messages in
the window procedure. The timer event will continue to occur even
after the application that created the timer has terminated. Note that
it is fairly uncommon for a Win32 application to create a timer for
another application, but this method does work.

Because Win32s runs on top of Windows 3.1 and shares many of its
characteristics, timers are owned by the application that calls
SetTimer(). The timer event terminates when the application that owns
the timer terminates.

Additional reference words: 3.10

INF: Using Serial Communications Under Win32s
Article ID: Q105759
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Windows NT and Windows provide significantly different serial
communications application programming interfaces (APIs). Win32s does
not support the Win32 Communications API.

A good approach to take in writing an application for Win32s that uses
serial communications is to create a pair of dynamic-link libraries
(DLLs) with the same name. One DLL will use Win32 Communications APIs
and be installed under Windows NT. The other DLL will use the
Universal Thunk to call a 16-bit DLL that will call the Windows
Communications API. This DLL will be installed under Win32s.

For more information on the Universal Thunk, see the "Win32s
Programmers Guide" included with the Software Development Kit (SDK).
In addition, there is a sample in MSTOOLS\WIN32S\UT\SAMPLES\UTSAMPLE.

Additional reference words: 3.10 comm

INF: Using VxDs and Software Interrupts Under Win32s
Article ID: Q105760
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Calling VxDs directly from Win32 code is not supported under Win32s.
Win32s does not support the VxD interfaces, so the call is handled by
the underlying Windows system. The Win32 application runs with 32-bit
stack and code sections, but Windows expects only 16-bit segments.
Therefore, the calls to the VxD cannot be handled by Windows as
expected.

To call software interrupts (such as Interrupt 2F) from a Win32
application running under Windows 3.1 via Win32s, place the call in a
16-bit dynamic-link library (DLL) and use the Universal Thunks to
access this DLL. To convert the addresses between segmented and linear
address, use UTSelectorOffsetToLinear() and
UTLinearToSelectorOffset().

Additional reference words: 3.10

INF: Getting Resources from 16-Bit DLLs Under Win32s
Article ID: Q105761
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

A Win32 application running under Win32s can load a 16-bit
dynamic-link library (DLL) using LoadLibrary() and free it with
FreeLibrary(). This behavior is allowed primarily so that
GetProcAddress() can be called for printer driver application
programming interfaces (APIs).

Calling FindResource() with the handle that LoadLibrary() returns to
the DLL that it just loaded results in an access violation. However,
the Win32 application can use the following APIs with this handle

 LoadBitmap
 LoadCursor
 LoadIcon

because this results in USER.EXE (16-bit) making calls to KERNEL.EXE.

If you go through a Universal Thunk to get raw resource data from the
16-bit DLL, it is necessary to convert the resource to 32-bit format,
because the resource format is different from the 16-bit format. The
32-bit format is described in the Software Development Kit (SDK) file
DOC\SDK\FILEFRMT\RESFMT.TXT.

To determine whether a DLL is a 32-bit or 16-bit DLL, check the DLL
header. The DWORD at offset 0x3C indicates where to look for the PE
signature. Compare the 4 bytes there to 0x00004550 to determine
whether this is a Win32 DLL.

Additional reference words: 3.10

INF: Sharing Memory Between 32-Bit and 16-Bit Code on Win32s
Article ID: Q105762
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Memory allocated by a Win32 application using GlobalAlloc() can be
shared with a 16-bit Windows application on Win32s. If the memory is
allocated with GMEM_MOVEABLE, then GlobalAlloc() returns a handle and
not a pointer. The 16-bit application can use the low word of this
handle. The high word is all zeros. Make sure to lock the handle using
GlobalLock() in the 16-bit application to get a pointer.

NOTE: GlobalAlloc (GMEM_FIXED...) is not the same as GlobalFix
[GlobalAlloc (GMEM_MOVEABLE...)]. GMEM_FIXED will allocate locked
pages, which is most often not what you want.

Memory allocated by a 16-bit application via GlobalAlloc() must be
fixed via GlobalFix() and translated before it can be passed to a
Win32 application. Whenever a Windows object is passed to a Win32
application by its 32-bit address, the memory must be fixed, because
the address is computed from the selector base only once. If Windows
moves the memory, the linear address used by the Win32 application
will no longer be valid.

If you are using the Universal Thunk, you can also pass a buffer from
a Win32 application to a 16-bit dynamic-link library (DLL) in the
UTRegister() call. The address is translated for you. Another
alternative is the translation list passed to the callable stubs.
Addresses passed in the translation list will be translated during the
thunking process. For more information on the Universal Thunk, please
see the "Win32 Programmer's Reference."

NOTE: The ability to share global memory handles under Win32s is a
result of the implementation of Windows 3.1, in which all applications
run in the same address space. This is not true of existing Win32
platforms and will not be true of future Win32 platforms.

Additional reference words: 3.10

Sample: Security API Functions Demonstration
Article ID: Q85397

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SIDCLN sample demonstrates some of the Win32 security
API functions, and provides a sample of how a utility could
be written that recovers on-disk resources remaining
allocated to deleted user accounts.

More Information:

The on-disk resources recovered are:

 Files that are still owned by accounts that have been
 deleted are assigned ownership to the account logged on
 when this sample is run.

 ACEs for deleted accounts are edited (deleted) out of
 the ACLs of files to which the deleted accounts had been
 granted authorizations (eg., Read access)

It may be that running this sample as a utility has no
practical value in many environments, as the number of files
belonging to deleted user accounts will often be quite
small, and the number of bytes recovered on disk by editing
out ACEs for deleted accounts may well not be worth the time
it takes to run this sample. The time it takes to run this
sample may be quite significant when processing an entire
hard disk or partition

Note: This sample is not a supported utility.

TO RUN:

 You must log on using an account, such as Administrator,
 that has the priviledges to take file ownership and edit
 ACLs

 The ACL editing part of this sample can only be
 excercised for files on a partition that has ACLs NT
 processes: NTFS

Typical test scenario: Create a user account or two, log on
as each of these accounts in turn, while logged on for each
account, go to an NTFS partition, create a couple of files
so the test accounts each own a few files, use the file
manager to edit permissions for those files so that each

test user has some authorities (e.g., Read) explicitly
granted for those files. Logon as Administrator, authorize
each test user to a few Administrator-owned files. Delete
the test accounts. Run the sample in the directories where
you put the files the test accounts owned or were authorized
to.

Sample: Saving/Loading Bitmaps in .DIB Format on MIPS
Article ID: Q85844

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SYMPTOMS
 In Win32, saving or loading a bitmap in .DIB file format is
 basically the same as in Win16. However, care must be taken in
 DWORD alignment, especially on the MIPS platform.

 An exception occurs when loading or saving a bitmap on the MIPS
 platform. In NTSD, the following error message is received:

 data mis-alignment

CAUSE
 A non-DWORD aligned actual parameter was passed to a function such
 as GetDIBits().

 The .DIB file format contains the BITMAPFILEHEADER followed
 immediately by the BITMAPINFOHEADER. Notice that the
 BITMAPFILEHEADER is not DWORD aligned. Thus, the structure that
 follows it, the BITMAPINFOHEADER, is not on a DWORD boundary. If a
 pointer to this DWORD misaligned structure is passed to the sixth
 argument of GetDIBits(), an exception will occur.

RESOLUTION
 To resolve this problem, copy the data in the structure over to a
 DWORD-aligned memory and pass the pointer to the latter structure
 to the function instead. See the sample code LOADBMP.C for detail.

More Information:

The is a sample to illustrates this process. Refer to the LOADBMP.C
file in the MANDEL sample.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: Common Dialog DLL
Article ID: Q81703

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A sample demonstrating the use of all of the common dialog
box functions in the Win32 API is now available.

More Information:

Each dialog box is demonstrated being used in three
different ways: standard, using a hook function, and using a
modified template.

Additional reference words:

ChooseColor, ChooseFont, GetOpenFileName, GetSaveFileName

Sample: Determining Drive and File System Type
Article ID: Q81719

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A demonstration of how the GetDriveType and
GetVolumeInformation functions determine all logical drives
on a system, their disk type (local, remote, CD-ROM, and so
on), and their file system type (FAT, HPFS, and so on) is
available in a sample file named DRIVES.

More Information:

The additional API functions, GetLogicalDrives and
GetLogicalDriveStrings, are not required to determine the
drive and file system type, but are included as an example
of how these API functions can enhance the efficiency of
disk querying API calls.

When a drive type is removable (for example, a floppy disk
drive), then additional precautions are taken before
accessing this drive. A validation check is made to see if
media exists in the drive before proceeding. A simple test
of opening any file in the root directory of the removable
media drive using the OpenFile API function determines the
media's presence. If the OpenFile call returns a handle,
then media is present and further disk querying calls are
safely made on the logical drive. If the OpenFile call
fails, then no media is present and no further attempts to
query this drive are allowed. Note: in order to eliminate an
unwanted pop-up, prompting the user to insert a disk in the
drive, from being generated by the operating system, the
error mode is temporarily adjusted, using SetErrorMode, to
allow any OpenFile errors to immediately return to the
calling routine.

Sample: Walking a Directory Tree
Article ID: Q81720

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

A demonstration of how to recursively find all
subdirectories under the current working directory is
available in a sample file named WALK.

The WALK sample can be found in the \Q_A\SAMPLES\WALK
directory.

More Information:

Starting with the current working directory, a call is made
to the Walk function which will find all subdirectories in
the current working directory. When a subdirectory is found,
the current working directory is changed to this
subdirectory and another, recursive call is made to Walk,
which again will find all subdirectories in this new current
working directory. Once all subdirectories for the current
working directory have been found, the current working
directory is changed up one level (..). When the original
current working directory is re-entered, then the recursive
process stops.

Additional reference words:

FindFirstFile, GetCurrentDirectory, SetCurrentDirectory
FindNextFile, GetFileAttributes

Sample: World Coordinate Transform
Article ID: Q81721

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SDK sample named WXFORM provides a demonstration of the
new world-coordinate transformation. This sample displays a
rectangle in world coordinates and a matrix containing the
transform values. Users can directly manipulate the
rectangle and see the effect on the transformation, or they
can set the transformation and see the effect on the
rectangle.

More Information:

The program begins by setting the viewport origin to the
center of the client area. It then draws a rectangle in
world coordinate space from the point (0, 0) to the point
(100, 100). The user can directly manipulate this rectangle
by using the left and right mouse buttons. Specific actions
are described more fully in the "Direct Manipulation Help"
dialog box.

There is a second dialog box titled "World Transform." This
shows the values of the eM11, eM12, eM21, eM22, eDx, and eDy
fields in the XFORM structure retrieved by calling the
GetWorldTransform function. By choosing the buttons on this
dialog box, the user can cause a SetWorldTransform to occur
in the program.

There are three coordinate systems of interest in this
sample. The first one is the world coordinate system, which
is new to Win32. These points are ultimately mapped to the
second coordinate system, device coordinates, before being
painted in the window. This program must also use a third
coordinate system, screen coordinates, for certain
interactions with the mouse pointer.

There is a third dialog box titled "Mouse Position" that
shows the location of the cursor in all three of these
coordinate systems. The device coordinates are relative to
the upper-left corner of the client area. They are not
relative to the viewport origin.

Additional reference words: ModifyWorldTransform

Sample: AngleArc Demonstration Program
Article ID: Q81724

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample named ANGLE provides a demonstration of how the
new AngleArc API function works. The X, Y, and RADIUS
parameters are all in the world coordinate space. The start
angle and sweep angle are floating-point values and are
interpreted as degrees.

More Information:

This program presents a dialog box stretched across the top
of the window. The user can set the parameters for the
AngleArc API function by changing the values in the entry
fields of this dialog box. A button on the dialog box then
allows the user to immediately see the results of these
values on the arc in the client area. If the values in the
entry field are invalid, the program will write out this
information and not draw the arc. The origin of the viewport
is shifted down in the client area so that it exists at the
upper-left corner of the viewable area.

Sample: Using GetDIBits() for Retrieving Bitmap Information
Article ID: Q85846

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

When saving a bitmap in .DIB file format, the GDI function is used to
retrieve the bitmap information. The general use of this function and
the techniques for saving a bitmap in .DIB format are largely
unchanged; however, this article provides more details on the use of
the Win32 API version of the GetDIBits() function. MANDEL is a sample
program that illustrates the information in this article.

More Information:

The function can be used to retrieve the following information:

 - Data in the BitmapInfoHeader (no color table and no bits)

 - Data in the BitmapInfoHeader and the color table (no bits)

 - All the data (BitmapInfoHeader, color table, and the bits)

The fifth and the sixth parameters of the function are used to tell
the graphics engine exactly what the application wants it to return.
If the fifth parameter is NULL, then no bits will be returned. If the
biBitCount is 0 (zero) in the sixth parameter, then no color table
will be returned. In addition, the biSize field of the
BitmapInfoHeader must be set to either the size of BitmapInfoHeader or
BitmapCoreHeader for the function to work properly.

Refer to the SAVEBMP.C file in the MANDEL sample for details.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: Writing NTSD Extensions
Article ID: Q85885

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

This article and the associated sample (called NTSD) demonstrate how
to write an NTSD extension for the NTSD debugger.

While debugging, it is often necessary to look up certain fields of a
particular structure in the program. This process usually involves
dumping the address of the structure in question and locating the
specific fields in the dump, which can be tedious and inefficient.

With NTSD, programmers can write a dumping routine to be called by the
NTSD debugger.

The routine must be in a DLL and have the following prototype:

 void Routine (HANDLE, HANDLE, HANDLE, PNTSD_EXTENSION_APIS, LPSTR);

 See the file DEBUG.C for details.

Then, to invoke the routine in NTSD, the user would do the following:

 !module.routine argument

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

SAMPLE: Process API Functions Example
Article ID: Q81825

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The PROCESS sample application provides a simple interface to the
CreateProcess() and TerminateProcess() functions. To create a process,
the user is presented with a common dialog box for selecting a file.
In this case, the file must have an extension of .EXE. Processes that
are started are presented in a list box. Any of the processes can be
selected in the list box and then terminated.

This sample is included with the Microsoft Win32 Software Development
Kit for Windows NT. For additional information on obtaining a copy of
the Win32 SDK, contact the Microsoft Developer Services Team at (800)
227-4679, ext 11771.

Warning: "TerminateProcess() is used to cause all of the threads
within a process to terminate. While TerminateProcess() will cause all
threads within a prcess to terminate, and will cause an application to
exit, it does not notify DLLs that the process is attached to that the
process is terminating. TerminateProcess() is used to unconditionally
cause a process to exit. It should only be used in extreme
circumstances. The state of global data maintained by DLLs may be
compromised if TerminateProcess() is used rather than ExitProcess()."

Additional reference words: 3.10

Sample: Using Thread API Functions
Article ID: Q81826

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The THREADS sample application shows how to use
SetThreadPriority, SuspendThread, and ResumeThread.

More Information:

To use THREAD, start the application. Two threads will be
created; one will draw a red rectangle and the other a green
rectangle. Both of these rectangles move about the window;
their speed and behavior is based on the thread priority and
its resumed/suspended status. The priority and status are
set through menu selections.

Of special interest is the suspension count. The system
keeps track of the number of times a thread has been
suspended and resumed. Each time the thread is suspended,
the count is incremented; each time it is resumed, the count
is decremented. The suspension count can either be tracked
by applications manually, the same way this sample
application does, or the return value from ResumeThread and
SuspendThread can be used to obtain the previous suspension
count before the call was made. Only when the suspension
count is zero will the thread run.

A thread now has seven levels of priority exposed at the API level:

 THREAD_PRIORITY_IDLE
 THREAD_PRIORITY_LOWEST
 THREAD_PRIORITY_BELOW_NORMAL
 THREAD_PRIORITY_NORMAL
 THREAD_PRIORITY_ABOVE_NORMAL
 THREAD_PRIORITY_HIGHEST
 THREAD_PRIORITY_TIME_CRITICAL

Note, caution should be used when setting a thread priority to
THREAD_PRIORITY_TIME_CRITICAL. This level is high
enough to interfere with the application's window performance,
and interfere with other applications running on the system.

Sample: Demonstration of Using System Info API
Article ID: Q81849

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GETSYS SDK sample is a dialog box that provides the user with an easy
way to see the results of the following API functions:

 GetSysColors()
 GetSystemDirectory()
 GetSystemInfo()
 GetSystemMetrics()
 GetSystemPaletteEntries()
 GetSystemTime()

Sample: StretchBlt Demonstration
Article ID: Q81850

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The STREBLT sample is an easy to use demonstration of the
StretchBlt API function. The program presents a dialog box
on the top of the window, and through this dialog box the
user can manipulate the parameters to StretchBlt. In the
main window, the source bitmap is displayed on the right
half of the window, and the destination bitmap is displayed
on the left half.

More Information:

The source and destination rectangles may be changed
directly in the dialog, or they may be changed by using the
direct manipulation objects in the two halves of the window.
Clicking and dragging the mouse in the upper-left corner
moves the rectangles; clicking and dragging the mouse in the
lower-right corner sizes the rectangles. The source direct
manipulation object is temporarily erased before calling
StretchBlt so that the top and left edges do not show in the
destination image.

The raster operation for the StretchBlt call may be changed
by altering the values in the right-most entry fields. The
contents are interpreted to be in hexadecimal. There is a
combo box directly beneath these entry fields that lists all
of the standard raster operations. If the user selects a
standard ROP from this combo box, its contents are copied
into the ROP entry fields and are then used in the
StretchBlt call.

Several of the raster operations make use of a pattern in
the destination HDC. For this reason, the program also
allows the user to select one of the standard pattern
brushes from a second combo box. This brush is selected into
the destination HDC just prior to making the StretchBlt
call.

The effect of the StretchBlt call is also affected by the
"StretchBlt mode" that has been set for the destination HDC.
A third combo box allows the user to select from any of the
standard modes. The difference is most easily observed when
stretching from a large source rectangle to a small
destination rectangle.

The "Draw" button may be chosen at any time to cause the
StretchBlt call to be made. This does not erase the
background, so that the effect of multiple ROPs on the HDC
can be observed. Manipulating the source rectangle also
causes a StretchBlt to occur without erasing the window.
However, manipulating the destination rectangle erases the
destination half of the window before the next StretchBlt is
called.

Sample: Creating Resource-Only DLLs
Article ID: Q85915

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The RESDLL sample shows how to create a resource-only
dynamic link library (DLL). In short, this is accomplished
by creating and resource-compiling a resource (.RC) file,
and then linking it correctly.

The MAIN.EXE program tests THE_DLL.DLL by loading it and
referencing the DLL's icon, cursor, and bitmap. The icon
and cursor are used by the registered window class, and
the bitmap is used in painting the client area.

SAMPLE: Standard DLL & Ex. of Creating a Custom Control Class
Article ID: Q81852
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

The SPINCUBE sample provides a generic Windows NT dynamic link library
(DLL) template demonstrating the use of DLL entry points, exported
variables, using C run time in a DLL, and so forth.

This sample also provides a functional example of how to create a
custom control class that may be used by applications (for exampl,
SPINTEST.EXE) as well the Dialog Editor.

MORE INFORMATION
================

SPINCUBE.DLL contains the control window procedure and the interface
functions required by the Dialog Editor (see SPINCUBE.C), as well as
the control paint routines (see PAINT.C). SPINTEST.EXE is a small test
program that loads SPINCUBE.DLL and creates a few of the custom
controls.

To test SPINCUBE with the Dialog Editor:

1. Start the editor. From the File menu, choose Open Custom.

2. Enter the path and filename of SPINCUBE.DLL.

3. Create a new dialog box and choose a custom control button from the
 control palette (lower-right corner).

4. Click the dialog box to create a SPINCUBE control.

5. Save the dialog box template.

6. Inspect the .DLG file that was created.

Additional reference words: 3.10

Sample: Using Region-Related API Functions
Article ID: Q81874

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The REGIONS sample demonstrates various region-related API
functions, and allows a user to create rectangular,
elliptic, and multi-polygon regions. In addition, hit-
testing a region and combining regions using the different
region-combination modes is demonstrated.

More Information:

When the program has started, create a region by choosing
one of the items in the Create submenu. At this point, items
in the Options submenu will be enabled, and hit-testing,
inversion, and other actions can be performed on the region.

When a second region is created, items in the Combine
submenu will be enabled. Choosing one of these items causes
CombineRgn to be called with the specified combine mode, and
the two regions are merged into one.

It is possible to create up to three regions at a time.
Items in the Options submenu always apply to the most
recently created (or combined) region. The Erase item
deletes all existing regions. Items in the Combine submenu
always apply to the two most recently created (or combined)
regions.

Additional reference words:

PtInRegion, CreateEllipticRgn, GetRgnBox, CreatePolygonRgn,
CreateRectRgn, SetRectRgn, OffsetRgn, FillRgn, FrameRgn

Sample: PlgBlt Demonstration
Article ID: Q81875

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

Win32 offers a new API function that will copy a bit image
onto an arbitrary parallelogram. Now, for the first time,
application programs can trivially rotate or shear bitmaps.
The PLGBLT SDK sample is an easy to use demonstration of how
this new API function may be used.

More Information:

The program presents a dialog box on top of the window that
displays the input parameters to the PlgBlt function. By
choosing the "New Src" or "New Mask" button, the user can
select a new bitmap for use as the source bitmap or as the
monochrome mask bitmap. The client area of the window is
divided into three regions. The region on the left contains
the result of the PlgBlt operation. The region in the middle
provides the source HDC, and the region on the right
provides the mask bitmap for the PlgBlt operation.

In each of the three regions, there is a "direct
manipulation object." This object may be picked up and moved
by clicking the left mouse button in the top-left corner and
dragging. The three objects are restricted in their response
to user actions to correctly reflect the parameters to the
PlgBlt function. The object in the mask region may be moved
only. The object in the source region may be moved or sized.
The object in the destination region may be moved, sized,
sheared, or rotated. Please see the WXFORM sample for more
information on how this direct manipulation is accomplished.
Additional information on the WXFORM sample may be obtained
by querying on the word WXFORM in this knowledge base.

SAMPLE: Using Graphic Paths Demonstration
Article ID: Q81876

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The PATHS sample demonstrates the use of paths for drawing, filling,
and clipping. The program draws six different figures in the window
and labels each one. Each figure is based on the same path re-created
six times. The six figures are the result of calling the following
Windows functions (with the poly fill mode in parentheses):

 StrokePath()
 FillPath()
 StrokeAndFill()(Winding)
 StrokeAndFill()(Alternate)
 SelectClipPath()(Winding)
 SelectClipPath()(Alternate)

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Additional reference words: 3.10

SAMPLE: PolyBezier() Demonstration
Article ID: Q81877

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The BEZIER sample provides an easy to use demonstration of how the
PolyBezier() function works. The user can place points in the window
with the left mouse button. The user can also move these points by
dragging with the same mouse button. The PolyBezier() curve is drawn
dynamically to follow the position of the new points.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

In order to use this program, press the left mouse button at
miscellaneous places in the client area. A Polyline() call shows
exactly where the points were put. When there are 4, 7, 10, ...,
(3n+1) points on the screen, the PolyBezier() curve is drawn with
these as control points. The API itself does not draw anything if
there are some other number of points. The whole client area may be
erased by pressing the right mouse button.

Additional reference words: 3.10

Sample: Demonstration of Setting File Attributes
Article ID: Q85917

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SETINFO sample shows how to get and set information on file
date, time, attributes, and size. SETINFO demonstrates much of the
functionality of OS/2's DosQFileInfo() and DosSetFileInfo().

More specifically, the SETINFO sample shows how to set file attributes
and how to modify file and date times (and how to do the conversions
from file time to DosTime, and so on). To use the sample file, enter a
filename in the appropriate edit field and choose the Get Info.
button. To set file attributes or file date and time information,
modify the values in the edit fields and check buttons, and choose the
Set Info. and Set Attr. buttons. To slow down the return code
reporting, enter a larger value into the time edit field, and choose
the Set Time button.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: GetDeviceCaps() Demonstration Program
Article ID: Q83930

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GETDEV sample is a dialog box that displays the result
of the GetDeviceCaps call with all of the possible input
parameters. Six of the numeric results (TECHNOLOGY,
LINECAPS, POLYGONALCAPS, TEXTCAPS, CLIPCAPS, and RASTERCAPS)
are expanded to show the constant string from WINGDI.H.

Sample: PolyDraw Function Demonstration
Article ID: Q83931

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The POLYDRAW sample provides an easy-to-use
demonstration of how the PolyDraw Win32 API function works.
The user can place points in the window with the left mouse
button, and move these points by dragging with the same
mouse button. The PolyDraw curve is drawn dynamically to
follow the position of the new points.

More Information:

To use this program, click the left mouse button at
miscellaneous places in the client area. A Polyline call
shows exactly where the points were put. By default, the
type entered into the type array is PT_LINETO. This can be
changed to a PT_MOVETO type by holding down the SHIFT key.
It can be changed to a PT_BEZIERTO type by holding down the
CTRL key. The resulting purple curve shows the results.
There will be no curve when the bezier points do not come in
groups of 4, 7, ... , (3n+1).

SAMPLE: Simple DLL Demonstration
Article ID: Q83932

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SIMPLDLL sample provides a generic DLL template. Also
included are two small test applications, LINKTEST and
LOADTEST, which demonstrate load-time linking (to a DLL
import library) and dynamic loading, respectively.

More Information:

THE_DLL contains a skeleton DLL (dynamic-linked library)
entry point and five exported functions with varying
parameter lists. A resource file (containing a dialog box
template) is also used.

LINKTEST is a small application that links with the
THE_DLL's import library, and allows the user to make calls
into THE_DLL (via menu item selections).

LOADTEST is a small application that loads THE_DLL at run
time and calls the GetProcAddress function to retrieve the
addresses of THE_DLL's exported functions. Again, the user
is allowed to make calls into THE_DLL.

Additional reference words: GetModuleFileName, LoadLibrary,
GetProcAddress

Sample: Using Timers in Windows NT
Article ID: Q83933

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The TIMERS sample illustrates the use of the SetTimer and
KillTimer Win32 API functions. Button controls allow a user
to start and stop timers, which determine the frequency of
flashing rectangles in the client area.

Sample: Using Anonymous Pipes to Capture Child Process Output
Article ID: Q84082

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample INHERIT demonstrates how to redirect standard
output and standard error to an anonymous pipe using two different
techniques: passing anonymouse pipe handles to the child in the
STARTUPINFO structure, and by setting anonymous pipe handles as the
standard handles with the SetStdHandle API and having the child
process inherit them.

In the sample, a child process is started whose standard
output and standard error handles have been redirected to an
anonymous pipe. The parent reads out of this pipe and puts
the data to both the console and to a log file specified on
the command line.

Additional reference words:

 CloseHandle CreateProcess ReadFile
 CreateFile GetLastError CreatePipe
 WriteFile

Sample: Virtual Memory API Function Demonstration
Article ID: Q85919

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

VIRTMEM is a sample of the various virtual memory API functions
available under Win32.

When you start the application, you are initially given a RESERVED
page of virtual memory. You can change the protection and state of the
page through menu selections. Check marks will appear in the menu
items to indicate the current state and protection on the page. More
in-depth information regarding the page can be obtained by selecting
the Show Page menu item.

The Lock menu item allows you to lock and unlock the page in memory.

The application also uses structured exception handling and allows you
to try and write to the page in its various states and protections. To
do this, select the Test menu option.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

Sample: SUBCLASS Program Demonstration
Article ID: Q84242

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SUBCLASS sample demonstrates how a program can subclass
standard controls in order to extend their normal
functionality. This sample replaces the window procedure for
buttons, edit fields, and list boxes.

More Information:

The standard subclassing technique is to replace the window
procedure in the window structure by using:

 SetWindowLong (hwnd, GWL_WNDPROC, (LONG) SubclassWndProc);

In the SUBCLASS sample, the old window procedure is also
saved in a structure pointed at by the user data. Thus, any
functionality can be added to various classes of windows
without having to know what the class originally was.

In this sample, the subclass procedure adds the ability to
move and size the control windows when the application is
not in "test mode." When the application is in test mode,
the subclass procedure calls the original window procedure
and the controls behave as normal. Thus, this sample
provides the bare bones for a "dialog editor" type of
program.

Additional reference words: CallWindowProc GWL_USERDATA

Sample: CreateProcess() Priority Demonstration
Article ID: Q84539

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample STARTP demonstrates how to start a new process at a
given default priority. It is a functional replacement for the
"start" command, but with added features.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

STARTP starts a separate window to run a specified program. The
following is the command syntax for STARTP.

STARTP [/Ttitle] [/Dpath] [/h] [/l] [/min] [/max]
 [/c] [program] [parameters]

 title Title to display in window title bar. Put entire
 parameter in quotation marks to include spaces in the
 title; for example, startp "/Ttest job".
 path Starting directory.
 h Set default to high priority.
 l Set default to low priority.
 min Start window minimized.
 max Start window maximized.
 c Use current console instead of creating a new console.
 program A program to run as either a GUI application or a console
 application.
 parameters These are the parameters passed to the program.

Note that the priority parameters may have no effect if the program
changes its own priority.

Sample: Code Demonstration to Put a DACL on Floppy Disk Drives
Article ID: Q99459
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

There is no procedure for putting a discretionary access control list
(DACL) on floppy disk drives or COM ports with REGEDT32, using the
Control Panel, or using another part of the user interface.
Furthermore, there is no procedure for using the Win32 API to put a
DACL that survives reboots onto floppy disk drives or COM ports.

However, SD_FLPPY.EXE puts DACLs that survive logoff/logon on floppy
disk drives or COM ports; that is, these DACLs are on the floppy disk
drives or the COM ports until the next reboot.

A version of this sample program can be installed as a service such
that each time the machine starts, the DACLs are automatically
re-applied.

Purpose of This Sample

The purpose of this sample is to show sample code that applies DACLs
to floppy disk drives or COM ports.

Note: There may be as many desired user interfaces to this sort of
functionality as there are people thinking about this, so it is not a
purpose of this sample (or the Win32 service variation of it) to
present an incredibly cool user interface to how the DACLs get
applied. A very simplistic approach is taken to the user interface.
Anyone who wants more complicated DACLs applied, or wants other
variations in the user interface, will probably benefit by being able
to use this sample code as a starting point for their DACL-applying
application.

To Run

Type sd_flppy to lock the \\.\A: and \\.\B: devices.

Putting SD_FLPPY.EXE in a startup group or logon script might work for
some people.

This is not a supported utility.

More Information:

The version of this program that is packaged as a Win32 service is in
this same directory and is built with SD_FLPPY.EXE by the same

makefile.

The packaged-as-a-service approach might better suit people who need
to change the DACL on the floppy disk drives without requiring a
reboot or logoff. After installing the FLPSDSRV.EXE service on the
machine, the client application CHGFLPSD.EXE can be used over the
network to lock, unlock, or query the locked state of the floppy disk
drives of any machine where the FLPSDSRV.EXE service is running.

This packaged-as-a-service approach might better suit people that want
to inquire over the net what DACLs are on the floppy disk drives of
particular machines (to check or audit them). And this approach might
better suit people who would prefer that the DACLs be applied as the
system boots up so that the DACLs are applied before any user has
logged on at the keyboard.

The packaged-as-a-service approach is useful for protecting the floppy
disk drives as a resource on a particular machine (regardless of who,
if anyone, is logged on); whereas, the SD_FLPPY.EXE approach (running
an .EXE at logon time) is useful for keeping a particular user from
using the floppy disk drives on any machine that that user might use.
However, once user Sam6 has logged on to machine \\Mach3 and locked
the floppy disk drives with SD_FLPPY.EXE, the floppy disk drives will
stay locked until reboot. Of course a utility could easily be written
that could run in the startup group of a different authorized user
such as Jane3 to force the floppy disk drives on any machine Jane3
logs on to to be unlocked.

Additional reference words: 3.10

Sample: MaskBlt Function Demonstration
Article ID: Q84541

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MASKBLT sample is an easy-to-use demonstration of the
MaskBlt Win32 API function. The program presents a dialog
box on the top of the window; through this dialog box the
user can manipulate the parameters to MaskBlt. In the main
window, the source bitmap is displayed in the center third
of the window, the monochrome bitmap mask is displayed in
the right third of the window, and the destination bitmap is
displayed on the left.

More Information:

The destination rectangle may be changed directly in the
dialog box, or it may be changed by using the direct
manipulation object in the left third of the window.
Clicking and dragging the mouse in the upper-left corner
moves the rectangle; clicking and dragging the mouse in the
lower-right corner sizes the rectangle. The function
requires only a starting point (not a rectangle) for the
source and mask bitmaps. There is one additional direct
manipulation object for the source and one for the mask.
These objects may be moved by clicking and dragging with the
mouse.

The raster operation for the MaskBlt call may be changed by
altering the values in the right most entry fields. The
contents are interpreted to be in hexadecimal. There is a
combo box directly beneath these entry fields that lists all
of the standard raster operations. If the user selects a
standard ROP from this combo box, its contents are copied
into the ROP entry fields and are then used in the MaskBlt
call.

This sample provides clipboard support in the following manner.
Hitting <ctrl>+<insert> will copy the destination image into the
clipboard. Hitting <shift>+<insert> will copy a bitmap from the
clipboard into the source region. Hitting <alt>+<insert> will
do both; the destination image will be copied into the clipboard
and then down to the source region.

Sample: WNet API Function Demonstration
Article ID: Q87328

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The WINNET sample finds a connectable disk resource on the network,
connects to it, then disconnects. It's purpose is to demonstrate the
WNet Win32 APIs.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

Requirements for WINNET:

 - Ensure one or more network disk shares can be used by the
 machine/user-ID you run WINNET on.

 - Ensure that these one or more network disk shares are not already
 connected to the machine/user-ID you run WINNET on.

 - These net shares must not require a password.

IMPORTANT: Ensure net drive W: is not in use when you run WINNET.

Additional reference words: user ID WNetAddConnection
WNetAddConnection2 WNetCancelConnection WNetCancelConnection2
WNetCloseEnum WNetEnumResource WNetGetConnection WNetGetLastError
WNetGetUser WNetOpenEnum

Sample: Demonstration of Setting Console Text Color
Article ID: Q87329

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The CONSOLEC sample illustrates the use of the SetConsoleTextAttribute()
and GetConsoleScreenBufferInfo() functions to set the console text color
attributes.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

This sample also functions as a utility to set the text color of the
console window. The command syntax for the utility is as follows:

 COLOR FOREGROUND [BACKGROUND]

FOREGROUND and BACKGROUND are the new text color selections for the
current console. If the utility is invoked without any options, the
utilities syntax and a table of the possible color choices is
displayed. The BACKGROUND selection is optional, and thus just the
FOREGROUND text color can be changed.

Possible colors are: black, blue, green, cyan, red, magenta, yellow
and white. Each of these can be selected as the FOREGROUND or the
BACKGROUND color. Selection of the same color for both the FOREGROUND
and the BACKGROUND is not permitted. The color options are not case
sensitive, and only the first unique characters are necessary to
select the color. For example

 COLOR BLU W

will select blue on white text color attributes.

The text color attribute changes only affect new console output. Thus,
text in the console buffer before the utility is invoked retains its
original color attributes.

Additional reference words:

Sample: Asynchronous I/O Demonstration
Article ID: Q87330

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The EVENT sample demonstrates performing asynchronous I/O in Win32. In
Win32 you can do this in two ways. One way is similar to OS/2 where a
thread is spawned that performs the I/O and returns. With Win32, when
you create a file, it signals to the system that you want to perform
I/O asynchronously. Then, when ReadFile(), for example, is going to take
a significant amount of time to complete, an ERROR_IO_PENDING error is
generated, signaling you to do other tasks until you NEED the data,
at which time you can use the GetOverlappedResults() function, which
will finish the I/O.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

Note that this activity has taken place without the need of an
additional thread to perform the work. This sample touches only on the
capabilities of what one can do with the new overlapped I/O functions.
For example, an application that uses pipes to communicate over the
network to other clients can create these file handles with the
overlapped flag. Then, instead of blocking and waiting for a
connection, the server application can go about doing useful tasks
waiting for the pipe to enter the "signaled" state. In addition, you
can perform more than one operation on this handle at one time, such
as reading and writing to the same file.

All this power does not come without some responsibilities on the
programmer's side. First, the system does not keep track of the system
file pointers. In addition, you cannot use the data until the system
responds by setting an event to a signaled state.

In the first case this just means you need to keep track of the value
"lpNumberOfBytesTransfered" returned by GetOverlappedResult() and update
the OVERLAPPED structure with this information. This OVERLAPPED
structure will then be passed into the Read/WriteFile() function, which
will use this as the offset to the starting point for the I/O
operation. The first call to Read/WriteFile() will normally then have
the offset fields in the OVERLAPPED structure set to zero.

The second case should be used as a criteria of whether to use this
type of I/O. If you need the data before you can do anything else, use

normal synchronous I/O and let the system handle the details for you.
This also demonstrates an important reason for using an EVENT to wait
on rather than the file handle. While both are allowed in a
multithread application, one cannot guarantee that the thread that set
the handle to the signaled state will be the one returning from the
GetOverlappedResult() because each thread is using the same handle to
wait on.

To keep this sample focused, the user interface is simple. To run
this sample at the command prompt, type:

 ASYNC_IO <In_file> <Out_file>

In_file and Out_file are place holders. As this is implemented, you
cannot write over an existing file. While this is up and running, you
will see vital statistics such as, such as the following:

 - When I/O is pending
 - How many bytes are transferred
 - End of file

Sample: Communications API Function Demonstration
Article ID: Q87331

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The COMM SDK sample application is designed to demonstrate the basics
of using the Win32 communications API functions while maintaining a
common code base with Win16 code.

This sample is included with the Microsoft Win32 Software
Development Kit for Windows NT. For additional information
on obtaining a copy of the Win32 SDK, contact the Microsoft
Developer Services Team at 1 (800) 227-4679, ext 11771.

More Information:

The COMM program performs communications using the Windows functions
OpenFile(), ReadFile(), SetCommState(), SetCommMask(), WaitCommEvent(),
WriteFile(), and CloseFile().

This sample creates a background thread to watch for COMM receiver
events and posts a notification message to the main terminal window.
Foreground character processing is written to the communications port.

Simple TTY character translation is performed and a screen buffer is
implemented for use as the I/O window.

Overlapped file I/O techniques are demonstrated.

How to Use

The baud rate, data bits, stop bits, parity, port, RTS/CTS
handshaking, DTR/DSR handshaking, and XON/XOFF handshaking can be
changed under the Settings menu item.

Once the communications settings are set up, the Action menu item can
be selected to connect or disconnect the TTY program.

Sample: Demonstration of the Console API Functions
Article ID: Q87332

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The CONSOLE sample demonstrates the Win32 console API functions. The
program takes no parameters; to start, just run CONSOLE.EXE. After
starting the sample, you can click on one of the functions on the
screen to get a demonstration of that function. When viewing a demo
of the function, the title of the console window is changed to show
the name of the source file where that demo function resides. This
should make it easy to find the sample code where the function of
interest resides.

Please note that some of the demos cover multiple APIs, so some of
the menu choices run the same demo.

Sample: Distributed Bounded Buffer Solution (DBBS)
Article ID: Q95528
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The BNDBUF sample demonstrates the distributed version of the
classical operating systems producer-consumer problem. A centralized
buffer pool managed by the RPC server is used by the producers and
consumers. Counting semaphores are used to make sure that consumptions
take place when there is at least one unconsumed string in the buffer
pool and productions take place when there is at least one empty slot
in the buffer pool. Synchronization to the shared buffer pool is
coordinated by means of a mutex.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. For additional information on obtaining a
copy of the Win32 SDK, contact the Microsoft Developer Services Team
at (800) 227-4679, ext 11771.

More Information:

To use this program, the RPC locator service must be started first
using the following command line:

 start locator /noservice

Next, start the application server by typing:

 start bndbufs

Multiple clients could then be started by typing the following for
each client to be started:

 start bndbufc

The application uses while loops to run forever. Therefore, you need
to use CTRL+C to terminate each component.

Additional reference words: 3.10

Sample: Demonstrating GDI and User APIs in Fractals
Article ID: Q94898
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MANDEL sample demonstrates the Win32 GDI and USER API
functions in the setting of fractals.

More Information:

The Mandelbrot Dream provides the following functions:

 Drawing the Mandelbrot set and the corresponding julia
 set
 Zooming into any of the set
 MDI fractal drawing windows
 Floating Point Math/Fix Point Math
 Shifting color table entries
 Changing palette entries and animating palatte aka color
 cycling
 Loading/Saving bitmap created with special effect
 Changing bitmap color with flood fill
 Boundary tracing and creating a clip region out of it for
 creating special effect
 Enumerate printers for printing
 Load RLE (or convert .bmp files to RLE) for playing in viewer
 Save the RLE in memory to disk.

 Note: The sample also makes use of the LARGE_INTEGER library
 shipped with the SDK for its fixed point math.

Drawing the Mandelbrot Set and the Corresponding Julia Set

1.To draw the Mandelbrot set, choose the Mandelbrot Set
 menu item from the Create menu to create a MDI child
 window to draw the set in if one has not already been
 created.

2.Then, choose either "use Fix Point math" or "use Floating
 Point math" from the Draw menu to decide if floating
 point or fixed point math is desired for calculation.
 Fix Point is faster, however you lose resolution sooner
 as you zoom in.

3.Also, choose the number of iterations from the Iteration
 menu item and choose Step from the Draw menu. The higher
 the number of iterations, the more detail is the picture

 but the slower to generate the picture. The step
 determines whether every scan line is drawn. The more
 scan lines it has, the better the picture but the slower
 to generate the picture.

4.To start drawing, choose Draw Set from the Draw menu.

5.To draw the Julia set, use the right mouse button to
 select a point in the Mandelbrot set (the drawing surface
 of the Mandlebrot window). A new Julia MDI window will be
 created. Then choose Draw Set from the Draw menu to
 start drawing.

6.The point selected with the right mouse button determines
 the complex constant to use for the Julia Set.

Zooming Into Any of the Set

1.To zoom in, click, drag and release with the left mouse
 button to describe the zoom in region.

 A new MDI child of the same type as the parent
 (Mandelbrot window or Julia window) will be created.

2.Choose Draw Set from the Draw menu to start drawing.

MDI Fractal Drawing Windows

 Choose either Mandelbrot Set or Julia Set from the Create
 menu for creating a new MDI window for drawing.

 Or, use the left mouse button to describe a zoom in
 region in either a mandelbrot or Julia MDI window for
 creating a new MDI window for drawing.

 Or, click on the Mandelbrot window with the right mouse
 button for creating a Julia MDI window corresponding to
 the mouse click position in the Mandelbrot window.

Floating Point Math/Fix Point Math

 Choose the appropriate menu item ("Floating Point math"
 or "Fix Point math") from the Draw menu. The Fix Point
 math uses 20.11 fixed point integer arithmetic for
 calculation.

Shifting Color Table Entries

 Choose Shift from the Color menu or hit F10 to shift the
 color table entry. The picture of the active MDI window
 will be updated.

Changing Palette Entries and Animating Palatte (aka Color
Cycling)

 Choose Cycle from the Color menu or hit F11 to start
 color cycling the picture.

 The menu item will be grayed if the display device does
 not support palette management. Currently, only the MIPs
 display driver supports that.

Loading/Saving Bitmaps Created With Special Effect

 Choose Load Bitmap from the Bitmap menu to load a bitmap
 into the active child window. Or, choose Save Bitmap As
 to save the picture in the active MDI child window.

Changing Bitmap Color With Floodfill

 Choose Custom from the Color menu to select a color.
 Then the cursor will be changed to a paint can over the
 active child window. Click with the left mouse button on
 the picture, the old color under the cursor will be
 changed to the new color.

Boundary Tracing and Creating a Clip Region Out of it For
Creating Special Effect

 From any active Mandelbrot window, choose Set Mandelbrot
 Clip region from the Region menu. The boundary of the
 escape region will be traced. The region will then be
 selected as a clip region.

 Thus, if you load a bitmap for display, the bitmap will
 only show through the clip region. The new picture can
 then be saved.

 To remove the clip region, choose Remove Clip Region from
 the Region menu.

 Note, the boundary tracing algorithm may trace out a
 small island of only several pixels and stop. If that
 happens, you might change the size of the window or
 create another zoom window and trace again.

Enumerate printers for printing

 On start up, the Mandelbrot Dream will enumerate the
 printers and insert the printers into the Print menu.
 Then selecting the printer on the Print menu will print
 the picture in the active MDI window.

Load RLE (or convert .bmp files to RLE) for playing in viewer

 Choose the Viewer item from the Create menu to create a
 viewer window or bring any existing viewer window to the top.
 Select Load Bitmap(s) from the File menu for loading RLE or
 bmp files into the memory from disk.
 Select the Play or Play Continuously item from the Options
 menu for viewing.

 For demonstration of what this functionality can do.
 Load the .\rsc\julia.rle file and select Play Continuously.

 The Julia.rle is a collections of the various julia sets
 along the boundary of escaping and non-escaping points of
 the Mandelbrot Set.

Save the RLE in memory to disk.

 Choose the Viewer item from the Create menu to create a
 viewer window or bring any existing viewer window to the top.
 Select Save Bitmap(s) from the File menu for saving the RLE(s)
 from memory to disk.

SAMPLE: Demonstration of the Win32 Font API Functions
Article ID: Q94903
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The TTFONTS sample is an easy to use, powerful utility which
allows the user to explore the font system. There is a
toolbar on top of the main frame window with buttons that
allow the following actions:

1.Enumerate all of the fonts installed for the display.
2.Get TEXTMETRIC & OUTLINETEXTMETRIC information.
3.Create a font based on an arbitrary LOGFONT structure.
4.Get "font data" by using the GetFontData() API.
5.Enumerate all of the fonts available to the default printer.

More Information:

The program is designed to provide the user an easy
interface to the API calls related to the font system. It
will not protect against meaningless values, nor will it
hide system oddities. Most of the buttons on the toolbar
are self explanatory and represent a single system API.

Pressing the EnumFonts button will show all of the face
names listed horizontally, and each of the fonts within that
face name listed vertically below it. TrueType fonts will
be marked with a small colored "TT" bitmap. Fonts that have
the DEVICE_FONTTYPE bit on will be marked with a small
bitmap image of a printer. When the enumeration windows are
showing the user can click the left mouse button to copy the
information about a selected font into the LOGFONT and
TEXTMETRIC dialogs. The user can dismiss this window
without changing the dialog boxes by clicking with the right
mouse button or typing any character.

The "Display" window is able to operate in any one of three
modes. These are listed in the "Display" menu. The first
just writes "Hello" in the middle of the screen, and it
grids the background. This is useful when utilizing the
lfEscapement and lfOrientation fields of the LOGFONT structure.
The second mode writes all of the glyphs between the tmFirstChar
and tmLastChar values stored in the TEXTMETRIC structure. The
final mode is used only for true type fonts. It calls
GetFontData, finds the 'cmap' table, and displays glyphs from
the different ranges in this table. Use the horizontal scroll
bar in the display window to step through the ranges.

Notice:

There is a font distributed on the Win32 SDK disk which covers
more than one thousand unicode characters. In order to use this
application to its full potential, you will want to install that
font using the Control Panel, Fonts item. The font is named
L_10646.TTF.

SAMPLE: A Simple Service
Article ID: Q99460
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The Simple Service sample demonstrates how to create and install a
service.

In this particular case, the service merely opens a named pipe,
anything, it surrounds the input with

 Hello! [<input goes here>]

and sends it back down the pipe to the client.

The service can be started, stopped, paused, and continued.

To install the service, first compile everything, and then use INSTSRV
to install SimpleService as follows:

 instsrv SimpleService <location of SIMPLE.EXE>

To start the service, use either the "net start" method or use the
Control Panel Services application.

Once the service has been started, you can use the CLIENT program to
verify that the service is working correctly by using the following
syntax:

 client \\.\pipe\simple stuff

This should return the response:

 Hello! [stuff]

After using the sample, if you want to remove the service, just type:

 instsrv SimpleService remove

Note: INSTSRV can be cause problems; it can install and remove any
service you tell it to, so be careful.

Additional reference words: 3.10 CloseServiceHandle
InitializeSecurityDescriptor SetSecurityDescriptorDacl
SetServiceStatus OpenSCManager StartServiceCtrlDispatcher
RegisterEventSource DeregisterEventSource RegisterServiceCtrlHandler

SAMPLE: Enhanced Metafile Editor
Article ID: Q94904
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MFEDIT sample demonstrates the Win32 enhanced metafile application
programming interface (API) functions. This sample is included with
the Microsoft Win32 Software Development Kit (SDK) for Windows NT. For
additional information on obtaining a copy of the Win32 SDK, contact
the Microsoft Developer Services Team at (800) 227-4679, extension
11771.

More Information:

The MFEDIT metafile editor provides the following functionalities:

 - Playing back and recording graphical device interface (GDI) calls.
 - Embedding a bitmap and enhanced metafile into another enhanced metafile
 with transformation.
 - Hit-testing against enhanced metafile records.
 - Random access playback.
 - Playing back metafile records one-by-one.
 - Selective recording of existing enhanced metafile records into a new
 enhanced metafile.
 - Drawing with pen, text, bezier, line, ellipse, rectangle, and embedding
 bitmap and enhanced metafile tools.

Playing Back and Recording GDI Calls

 - To play back an existing enhanced metafile, from the File menu, choose
 Load Metafile, or click the Eject button to bring up the open file
 dialog box, and select the appropriate file. Then click the Play
 button to play the file on the drawing surface.

 - To record, click the Record button and draw on the drawing surface
 with the graphic tools provided. When done, click the Stop button.

 The GDI calls are recorded as C:\METAFX.EMF, where x is 0, 1, 2, 3,
 and so forth. If you want to save the metafile with a different
 name, choose Record Metafile As from the File menu.

 The new filename is used as the root for all metafiles recorded; 0,
 1, 2, and so forth are appended to the root name.

 - The default drawing tool is "pen". To select a different drawing tool,
 click the desired tool button in the control panel.

Embedding a Bitmap and Enhanced Metafile into Another Enhanced Metafile

with Transformation

 - Click the Record button. Select the bitmap or metafile tool and then
 embed the currently loaded bitmap or metafile as described in 7 below.
 When done, click the Stop button.

Hit-Testing Against Enhanced Metafile Records

 - Play back an enhanced metafile by clicking the Playback button. Then
 choose Hit Test from the Edit menu. The cursor is changed to a cross
 hair when the mouse pointer is over the drawing surface.

 - Then click the graphic object played back in the drawing surface. The
 editor will search through the metafile, record after record, to find
 the record that corresponds to the object based on the mouse position.
 The search provides a visual cue by changing the graphic objects to red
 as it goes until it hits the corresponding object. If there is a hit,
 the record number is displayed on the control panel, a beep is heard,
 and a hit message is displayed on the bottom.

 When done, clear the Hit Test menu item.

Random Access Playback

 - Click the number button in the control panel to play back a
 particular record. To access a non single-digit record, click the
 10+ button an appropriate number of times and then click the
 appropriate number button to bring the sum to the record desired.

Playing Back Metafile Records One-by-One
--

 - Click the Fast Forward button to play the metafile records one at a
 time.

Selective Recording of Existing Enhanced Metafile Records into a New
Enhanced Metafile
--

 - Click the Record button and the appropriate number button for playing
 back selective metafile records in the drawing surface. The playback
 records will be recorded into the new metafile. When done, click the
 Stop button.

Drawing with Pen, Text, Bezier, Line, Ellipse, Rectangle and
Embedding Bitmap and Enhanced Metafile Tools
--

 - The default pen is black. To change the pen color, choose the Pen menu
 item from the Options menu to select a color.

 - The default brush used by the Fill Rectangle and Fill Ellipse routines
 is black. To change the brush color, choose Brush from the Options menu
 to select a color.

 - The Text tool uses the default system font. To change the font, choose
 Font from the Options menu to change to a different font and font
 attributes.

 - The Bezier tool takes four points initially and three thereafter. To
 draw a bezier curve, select the Bezier tool and click the drawing
 surface three or four times to place the control points.

 - To embed a currently loaded bitmap, select the Bitmap tool and click
 three points on the drawing surface to describe where you want the
 bitmap located. The editor does the proper transformation on the
 bitmap and embeds the bitmap in the drawing.

 - To load a bitmap, choose Load Bitmap from the File menu and make the
 selection. The Bitmap tool optionally takes a mask bitmap. The mask
 bitmap must be a monochrome bitmap.

 - To load a mask bitmap, choose Load Mask Bitmap from the File menu to
 make the selection. Select a color bitmap, because the mask has the
 effect of resetting the mask to none.

 - To embed a currently loaded enhanced metafile, select the Embed
 Enhanced Metafile tool and click three points on the drawing
 surface to describe where you want the enhanced metafile located. The
 editor does the proper transformation on the metafile and embeds it
 in the drawing.

Additional reference words: 3.10

SAMPLE: File I/O API Functions Demonstration
Article ID: Q94905

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

 FILER.EXE - File I/O Sample
 ===========================

SUMMARY:

 Filer.exe is a basic file management applet, ala File Manager or
 Norton CommanderTM. It demonstrates many of the new File I/O API,
 and their related algorithms, such as drive enumeration, .EXE Version
 Information retrieval and directory tree expansion. It also
 demonstrates many intensive user algorithms, such as child managment,
 subclassing, synchronization and control window management.

DESCRIPTION:

 Filer presents the user with two configurable child windows, each of
 which the user may associate with a drive from the drives available on
 the system.

 A Drive Toolbar describes the available drives on the system. Users
 select drives from the toolbar or the Drives menu. A function toolbar
 also corresponds to the file I/O functions in the File menu. A command
 line window at the bottom of the app will spawn a command shell with
 the command given, and the option of keeping or destroying the command
 window after the given command completes.

 Each of these Drive child windows contains a Directory ListBox, and a
 File ListBox, with which the user may browse through the files on the
 selected drive.

 Filer gives the user the option to Open (execute/edit), Copy, Delete,
 Move, and Rename files, as well as Make and Remove Directories, and
 display version information embedded in Win32 files. The active Drive
 child acts as the source, and the inactive Drive child acts as the
 default destination of file I/O operations.

 The Drive children may also be configured as side by side or above
 and below one another, and the File and Directory Listboxes in each
 may swap positions. The user may opt to fully expand the Directory trees.

 All features of Filer may be selected from the Mouse, Keyboard, or
 by Menu Items.

FUTURE ENHANCEMENTS(?):

 -Directory copy, move, and delete.
 -Font choice.
 -Online Help.
 -Save configuration.
 -File associations.
 -Network drive functions.
 -File size, last change information; view/modify file attributes.
 -Total size of given single/multiple selection of files.

Sample: Demonstration of Journal Hooks Under Win32
Article ID: Q99342

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The Minimum Recorder (MinRec) sample demonstrates journal record and
playback hooks in the context of a simple recorder application.

More Information:

The following is a complete list of files accompanying the Minimum
Recorder sample:

 MAKEFILE MinRec makefile
 MINREC.C Main source module
 MINREC.DEF Main source module definition file
 MINREC.DLG Dialog box templates
 MINREC.H Main source module header file
 MINREC.ICO MinRec icon
 MINREC.RC Resource file
 README.TXT MinRec readme file, which you are reading now
 RECHOOK.C Hook functions and procedures in a DLL
 RECHOOK.DEF Hook DLL definition file
 RECHOOK.H Hook DLL header file

Additional reference words: 3.10 read me make file

Sample: Dynamic Dialog Box Creation
Article ID: Q99461

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

An application usually defines a dialog box template in an RC or DLG
file, then creates a dialog box at run time from that. However, the
dialog box template can be created at run time. The DYNDLG sample
shows how to do this for Win32.

More Information:

The dialog box template in Win32 is conceptually similar to the
Windows 3.1 version, but is different enough to require some porting
work. For example, any strings are now stored in Unicode. The dialog
box template format is documented in the associated Help file.

Run-Time Dependency

One of the dialog boxes uses a custom control that is expected to be
defined in the SPINCUBE.DLL file. The DYNDLG sample attempts to load
this DLL at run time in the following location

 ..\spincube\spincube.dll

that is, in a directory of the same level, but named SPINCUBE. This
can be changed, and the sample recompiled. SPINCUBE is another sample
distributed in the Win32 SDK.

Additional reference words: 3.10

SAMPLE: Win32s Universal Thunks
Article ID: Q105170
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

UTSAMPLE can be found in the MSTOOLS\WIN32S\UT\SAMPLES\UTSAMPLE
directory of the Win32 SDK CD.

This sample shows how to use Universal Thunks to call application
programming interfaces (APIs) that are not supported directly by
Win32s.

This sample detects at run time whether it's running under Win32s or
Windows NT, and checks to see whether or not the APIs it calls are
supported; if they are not supported, the sample calls the appropriate
16-bit APIs via Universal Thunks.

Because this sample uses 16-bit code, you need a 16-bit compiler (not
included in the Win32 SDK). The included MAKEFILE.16 uses Microsoft
C/C++ version 7.0, but it could be easily adaptable to other
compilers.

Also, you need to obtain some components from the \MSTOOLS\WIN32S\UT
directory on your Win32 SDK CD-ROM. In particular, the W32SUT.H file
needs to go in %MSTOOLS%\H and also in a directory in the INCLUDE path
for your Win16 development environment. W32SUT32.LIB needs to go in
%MSTOOLS%\H, and W32SUT16.LIB needs to go in a directory in the LIB
path for your Win16 development environment.

Additional reference words: 3.10

Sample: How to Reboot or Shut Down Programmatically
Article ID: Q95966
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The BOB (big orange button) sample demonstrates the steps necessary to
reboot or shut down the machine in Windows NT and Win32s/MS-DOS
programmatically. A similar method can be used to log off a user. The
steps are as follows:

1. Check to see if the machine is running Windows NT; if so:

 a. Get the security token.
 b. Fetch the LUID for the SeShutdownPrivilege; this is required only
 for rebooting and shutting down the machine.
 c. Enable the shutdown privilege.

2. Use ExitWindowsEx() to log off, shut down or reboot the machine.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two group: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory; small
samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

CAUTION: Use this API (application programming interface) with care
and with plenty of warning so that a user is not rudely surprised.

There are two methods to prevent the system from shutting down, one at
the application level and one at the system level. At the application
level, process the WM_QUERYENDSESSION message so the application can
ask the user whether he or she wants to save any data that has not
been backed up to disk. Then, return TRUE assuming the process can
shut down safely or FALSE if it cannot [note: this will not keep the
machine from rebooting or shutting down if the parameter to
ExitWindowsEx() was or'ed with EXW_FORCE]. At the system level, it is
possible to remove the rights of certain users/groups to reboot the
machine. This is done via the UserManager application.

Additional reference words: 3.10

Sample: Creating a WinDbg Extension
Article ID: Q95967
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The purpose of the WDBGEXTS sample is to demonstrate how to create a
WinDbg (WinDebug) extension. This is a port of a sample demonstrating
how to create an NTSD extension.

Extensions are dynamic-link library (DLL) entry points. The arguments
passed to an extension are:

 HANDLE hCurrentProcess - Supplies a handle to the current process (at
 the time the extension is called).

 HANDLE hCurrentThread - Supplies a handle to the current thread (at
 the time the extension is called).

 DWORD CurrentPc - Supplies the current pc (program counter) at the time
 the extension is called.

 PWINDBG_EXTENSION_APIS lpExtensionApis - Supplies the address of the
 functions callable by this extension.

 LPSTR lpArgumentString - Supplies the command-line arguments for the
 extension.

The type PWINDBG_EXTENSION_APIS is defined in \MSTOOLS\H\WDBGEXTS.H.

Note that in the makefile, the -Gz option is specified to the compiler
in order to ensure that __stdcall is used.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two group: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory; small
samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The following is a description of the exported functions:

 Function Description
 -------- -----------

 igrep() Searches the instruction stream for a pattern.

 str() Given a pointer to a string, it prints out the string,
 its length, and its location in memory.

To use the commands contained in WDBGEXTS.DLL, make sure that the DLL

is placed in a directory that is on the path.

The syntax for the commands is as follows:

 !wdbgexts.igrep [pattern [expression]]

 !wdbgexts.str [string]

Additional reference words: 3.10

Sample: DDEML API Demonstration
Article ID: Q96395
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Install SDK sample provides an example of how to use the DDEML
API's to add groups and program items to the Program Manager. The
program can be run either in interactive or batch mode and the
search path can be specified on the command line.

More Information:

The program can be started from the command line. The following
flags can be used.

 (-/)(sS) <path> Specify the search path. Currently this must be
 single path. The application searches for an environmental variable
 "MSTOOLS". If this variable is not found then the default value is
 c:\mstools\samples.

 (-/)g(G) <name> Specify the name of the group that the items
 should be added to. The default value is 'Sample Applications'.

 (-/)b(B) Specifies that the program should run in batch mode.
 The program will find all of the .exe files in the specified
 path, searching recursively. It will then create the specified
 group and add all of the found executables to the group. The
 program will then exit.

 (-/)(iI) Specifies interactive mode. This is the default. The
 program will find all of the exe files in the specified
 path, searching recursively. The names will be displayed in
 a list with the name that will be use displayed in an additional
 list. A drop down combo box will display a list of the currently
 available groups. The user can type in a new group name if
 desired.

If the program finds more than 50 executables then after adding 50
items to a group a new group is created using the name currently
selected in the Program Manager Group list with "Part <n>" appended
where <n> starts at 2 and is incremented after every new group is
added.

Sample: Demonstration of the Win32 Debug API
Article ID: Q96396
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Debug Event Browser (DEB) Win32 SDK sample demonstrates
the new Win32 Debug API. This sample acts as a debugger for
both newly created debuggee processes or attaches to current
active processes.

DEB is not a debugger in the traditional sense; it is a
browser as its name implies. DEB displays the debug events,
and their relevant properties, as they occur and invokes
the default handlers supplied either by the debuggee or the
system. Only the minimal debug event handling is imposed
such that the debug events are displayed and the debuggee is
continued on its normal course of execution.

The sample is source code compatible for both the Intel
80x86 and MIPS R4000 Windows NT platforms.

More Information:

The following is a complete list of files accompanying the
Debug Event Browser sample:

 DEB.BMP DEB bitmap used by DEB.RTF
 DEB.DEF DEB module definition file
 DEB.DLG DEB dialog resource script file
 DEB.H DEB ID values and user message defines
 DEB.HPJ DEB help project file
 DEB.ICO DEB main icon
 DEB1.ICO DEB animated icon number one
 ...
 DEB8.ICO DEB animated icon number eight
 DEB.RC DEB resource file
 DEB.RTF DEB help topic file
 DEBDEBUG.C DEB debug support functions
 DEBDEBUG.H DEB debug support functions header
 DEBMAIN.C DEB main module - WinMain and callbacks
 DEBMAIN.H DEB main module header
 DEBMISC.C DEB miscellaneous support functions
 DEBMISC.H DEB miscellaneous support functions header
 LINKLIST.C Ordered doubled-linked list library
 LINKLIST.H Ordered doubled-linked list library header
 MAKEFILE Make/Nmake file for the entire sample
 README.TXT This file you are presently reading
 TOOLBAR.BMP Toolbar bitmap used by DEB.RTF
 TOOLBAR.C Toolbar functions

 TOOLBAR.DEF Toolbar module definition file

Sample: GUIGREP File Manager Extension Sample
Article ID: Q96397
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The GUIGREP SDK sample implements a File Manager extension that can
serve as a source-file browser. Similar to the GREP utility, GUIGREP
finds occurrences of a search string in files that can be selected
through the File Manager.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The sample demonstrates multithreading, structured exception handling,
C++ code, File Manager extension functionalities, and memory-mapped
file manipulation. A very small application (NTGREP.EXE) "installs"
the File Manager extension by adding an entry to WINFILE.INI.

Additional reference words: 3.10

Sample: Demonstration of Using GetLocaleInfoW
Article ID: Q96398
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The LOCALE sample is a simple dialog box which provides
an interface between the user and the system via the
GetLocaleInfoW API.

Sample: Multiple Document Interface Demonstration
Article ID: Q96399
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MDI sample demonstates Multiple Document Interface and
associating data to each MDI window, and accelerators.

Sample: How to Share Memory Between Processes
Article ID: Q96400
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MEMORY sample demonstrates the use of the file-mapping application
programming interfaces (APIs) to create a share memory between
processes.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

Server

The "server" sets up the named share memory, and can be created by
choosing Server from the Create menu. This opens up a multiple
document interface (MDI) server child and swaps the menu bar to the
server menu bar. The server menu bar includes three choices: Create,
Server, and Window.

To set up the equivalent of a named share memory:

1. From the Server menu, choose Create File. This brings up the File
 Type dialog box. The user can create either a memory page file or a
 physical file by choosing the Page File or the Map File button,
 respectively, to back up the soon-to-be-created named share memory.

 If the Map File button is choosen, the named share memory will be
 backed up by a physical file on the disk. If the Page File button
 is choosen, the memory will be backed up by the memory page file.

2. From the Server menu, choose Create File Mapping. This brings up
 the Map Name dialog box. The user then can specify a name for the
 memory map file object that is created for the file created in step
 1 above.

 This name is used to identify the share memory by the clients in
 the other processes.

3. From the Server menu, choose Map View Of File. This essentially
 maps the map file object created in step 2 above into the process's
 address space.

4. From the Server menu, choose Access. This creates a multiline edit
 control (MLE) inside the MDI server child. Whatever is written in

 the MLE is put in the map file object.

Client

The "client" connects to the named share memory created by the server
in another process. A client can be created by choosing Client from
the Create menu. This opens up an MDI client child and swaps the menu
bar to the client menu bar. The client menu bar includes three
choices: Create, Client, and Window.

To set up the connection to the named share memory:

1. From the Client menu, choose Open File Mapping. This brings up the
 Map Name dialog box. The user can then enter the name of the map
 file object that the client wanted to connect to.

2. From the Client menu, choose Map View Of File. This essentially
 maps the map file object opened in step 1 above into the process's
 address space.

3. From the Client menu, choose Access. This creates an MLE inside the
 MDI Server child. Whatever was written in the map file object by
 the server will be shown in this MLE.

 The client synchronizes with the server at a regular interval.

4. From the Client menu, choose Refresh Now to refresh the contents of
 the map file object.

Additional reference words: 3.10

Sample: Demonstrating the Creation of Multiple Threads
Article ID: Q96401
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MULTITHRD sample demonstrates thread creation.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The MULTITHRD sample is a multiple document interface (MDI)
application. When an MDI child is created, a drawing thread is also
created with it. The drawing thread merely draws color boxes randomly
inside the MDI child window.

Additional reference words: 3.10

Sample: Constructing and Using a Message Table Resource
Article ID: Q96402
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The MSGTABLE sample demonstrates how to construct and use a message
table resource in your application. The sample message table
(MESSAGES.MC) for the message compiler (MC.EXE) shows the format of a
typical message table source file. Note that some of the entries for
each message are optional but are shown for demonstration purposes.
See the documentation in the TOOLS.HLP file on the message table
compiler for more information on which fields are optional.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

This sample shows how to create a resource-only dynamic-link library
(DLL) that contains nothing but the message table resource. The DLL
source file (MESSAGES.C) has a stub entry point that merely returns
TRUE. This is due to the requirement that a DLL have at least one
entry point, so we need to have one for our resource-only DLL.

The MSGTEST.EXE executable shows how to load the message table DLL,
how to extract the message text from the resource with the
FormatMessage API, and how to decode the various bits in the message
ID. Note that the MESSAGES.H include file to the executable is created
during the make process by the message compiler (MC.EXE) as it is
creating the binary resource file from the message table source file.

The makefile should be useful to demonstrate how to set up your
dependency rules for your message table source files and message table
DLL.

This sample could be easily modified to link the message table
resource directly into your executable rather than into a stand-alone
DLL; there is no requirement that the message table resource be
located only in a DLL, although this is the common case.

Additional reference words: 3.10

Sample: Sharing Named Memory Between Two Processes
Article ID: Q96403
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

SHAREMEM and OTHRPROC are two samples which work together to
demonstrate sharing named memory between two separate
processes. These samples must be run together.

More Information:

To use: first start an instance of SHAREMEM. A window will
appear, devided into an upper and lower section. The upper
section will have two edit fields: one displaying the mouse
pointer's X-coordinates, and the other the pointer's Y
coordinates, as the mouse moves in the lower section.

Start an instance of OTHRPROC. Allow OTHRPROC to keep
focus, but move the pointer around over the SHAREMEM'S
window. OTHRPROC has a similar window configuration;
however, you will notice that the X and Y coordinates of the
mouse as it moves over the SHAREMEM window are the values
that appear in the edit fields of OTHRPROC. To emphasize
this, a cross hair will appear in OTHRPROC's lower section;
its movements relative to the mouse position in SHAREMEM's
window.

What's happening: When SHAREMEM is started, it creates and
allocates a piece of named shared memory the size of a DWORD
(the size needed to hold the mouse cursor's X and Y
coordinates) using CreateFileMapping. As the mouse pointer
is moved across the window, the WM_MOUSEMOVE messages are
trapped, and the coordinates are written to the upper edit
fields and to the piece of named shared memory.

When OTHRPROC is started, it gets access to the named shared
memory by calling OpenFileMapping and MapViewOfFile.
OTHRPROC then uses a thread to poll and read the X and Y
coordinates written to the shared memory by SHAREMEM. It
captures the coordinates and draws a bit map of a cross hair
in the specified location.

Additional reference words: 3.10 crosshair

Sample: Platform Detection
Article ID: Q96404
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

All Win32 applications need to use GetVersion() to determine whether
they're on the Win32s or Win32 platform. GetVersion() sets the high
bit of the high word if the application is running on Win32s.

Win16 applications can determine whether there are running on Win32/NT
or Win16/MS-DOS by examining the flags return by GetWinFlags(); a
unique manifest constant is returned if the application is running in
the Windows on Windows (WOW) layer.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

Additional reference words: 3.10

Sample: Demonstration of Printing with Windows NT
Article ID: Q96405
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The PRINTER sample does the following:

 - Shows how to print on Windows NT, using both the CreateDC() and the
 PrinterDlg() methods for acquiring a printer HDC. The user is
 allowed to print different graphics objects, as well as a complete
 device font set. An Abort dialog box is also implemented.

 - Provides complete device capabilities for all printers and the
 display.

 - Provides information (levels 1 and 2) returned by a call to
 EnumPrinters().

 - Shows how to enumerate fonts for a particular DC.

 - Illustrates differences between the various mapping modes.

 - Demonstrates GDI functionality.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The main application window contains a menu and a toolbar. The various
submenus allow for:

 Submenu Description
 ------- -----------

 Print Calls CreateDC to get a device context for the
 selected printer in the toolbar combo box, and
 then prints the current graphics options to
 this DC.

 PrintDlg Calls PrintDlg to retrieve a device context for
 a printer, then prints out current graphics
 options to this DC.

 GetDeviceCaps Retrieves device capabilities for the device
 currently selected in the toolbar combo box, and
 displays them in a dialog box.

 EnumPrinters Retrieves levels 1 and 2 information returned
 by EnumPrinters, and displays this information
 in a dialog box.

 GetPrinterDriver Returns levels 1 and 2 information returned by
 GetPrinterDriver (for the currently selected
 printer) and displays this information in a
 dialog box.

 EnumPrinterDrivers Returns levels 1 and 2 information returned by
 EnumPrinterDrivers, and displays this information
 in a dialog box.

 Refresh Refreshes the contents of the toolbar combo box
 (changes made in Print Manager are reflected
 by this).

 About Application information dialog box.

 Mapping Modes User chooses between different mapping modes.

 Graphics User chooses different primitives to display.

 Pen User can configure size, color, and style of
 the drawing pen.

 Brush User can configure size, color, and style of
 the drawing brush.

 Text color User can configure color used to draw fonts.

Additional reference words: 3.10 combobox

Sample: Named Pipe Client/Server Demonstration
Article ID: Q96406
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

NPCLIENT and NPSERVER demonstrate the use of named pipes.
The basic design consist of a server application serving
multiple client applications. The user can use the client
applications as an interface to all of the other client
applications via the server. The effect is a simple
communication program that can be used over the network
between multiple clients.

More Information:

The actual implementation works by having the NPSERVER
application launch a new thread, which creates and services
a new instance of the server side of the named pipe every
time a client connects to it. You need only start one
instance of the NPSERVER application. It will service up to
100 instances of the NPCLIENT application. (Note that the
100 instance limit is hard coded into the sample. It does
not reflect the number of named pipe instances you can
create, which is virtually infinite.)

TO USE:

Start an instance of NPSERVER. A window will appear.

Start an instance of NPCLIENT. Two dialog boxes will
appear, one on top of the other. The top level dialog box
will prompt you for a share name and a client or user name.
If the instance of NPCLIENT is local to (on the same machine
as) the NPSERVER instance, enter a '.' for the share name.
Otherwise, enter the machine name of the server that the
NPSERVER instance was started on, i.e. 'FoobarServer'. For
the client or user name, enter any name you wish to be
identified with. Hit enter or click the OK button.

The upper dialog box will go away, and you'll see the Client
dialog box of NPCLIENT. It consists of two edit fields and
a 'Send' button. You will be able to read messages from
other clients (and yourself) in the larger/upper edit field.
(Note, if the message seems garbled, make sure the cursor of
the edit field is located in the lower left hand corner of
the field.) The smaller edit field is used to type
messages. To send a message: type something in the
lower/smaller edit field, and hit enter or click the Send
button. The message will appear in the larger edit field of
all the clients connected to the NPSERVER instance;

prepended by the user name you selected. Note that the user
name you selected will be entered into the caption bar of
the NPCLIENT instance. This allows you to more easily keep
track of multiple instances of NPCLIENT on the same machine.

At the same time the top level dialog box was dismissed from
the NPCLIENT instance, the NPSERVER window was updated with
the picture of a red spool of thread accompanied by the user
name you selected. This red spool indicates an active
client thread connected to NPSERVER. The spool may be
connected to other spools with a thin blue line (similar to
the way the File Manager connects files or directories).
Any time a client disconnects from NPSERVER; the spool
representing it will be grayed out.

DESIGN:

Basically, the NPSERVER application launches multiple
instances of a server thread. When the application is
started, the first thread is created. It creates an
instance of the server side of the named pipe, and waits for
a client to connect. Once a client connects, another thread
is started and it too blocks waiting for a client.
Meanwhile, the first thread updates a global array of client
information with this specific client's information. The
thread then enters a loop reading from this client. Any
time this specific client sends a message, this server
thread will call a function (TellAll) which will write the
message to all the clients that have been listed in the
global array.

On the client side, NPCLIENT tries to connect to the named
pipe with a CreateFile call. Once it has connected, it
creates a thread which loops and reads any message from the
server side. Once a message is read, it is printed in the
larger edit field. Any time the user hits the Send button,
the main thread grabs any text in the lower edit field, and
writes it to the server.

The steps between NPSERVER and an instance of NPCLIENT looks
like this:

 NPSERVER NPCLIENT
 -------- --------

 CreateNamedPipe()
 ConnectPipe() // Blocks
 CreateFile() //Connects to pipe.
 spawn separate thread to read pipe
 return from block
 updates array of clients
 spawn another server thread
 Loop
 ReadFile() // Blocks on overlap
 WriteFile() // User hits Send.

 return from block

 WriteFile() // Broadcast to clients
 End loop // When client breaks pipe.

 ReadPipe Thread:
 Loop
 ReadFile()
 block till server broadcasts

 return from block.
 put string in edit field.

 End loop // when server breaks.

The overlapped structure should be used anytime a pipe is
expected to block for any length of time on a read or write.
This allows the thread to return immediately from a read or
write to service any other part of your application. The
overlapped structure should also be used on a named pipe
anytime you expect to do simultaneous reads and writes.

Sample: Read/Write Synchronization Demonstration
Article ID: Q96407
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

This article refers to the file DATABASE.C, a part of the READWRIT
sample, which is one variation of the classical synchronization
problem, Reader/Writer. The Reader/Writer problem, first stated and
solved by Courtois, involves a shared resource--typically a database.
The issue is to allow both readers and writers access to the database
without corrupting it.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

Multiple readers are allowed to access the database as long as a
writer is not accessing it. However, when a writer is accessing the
database, no other readers or writers are allowed access. There are
several variations of this problem; the simplest favors readers to the
exclusion of writers, and visa versa.

The implementation used by the READWRIT sample allows multiple readers
in the database at one time until a writer wants entrance. Then, no
other reader can enter the database until this writer is finished. All
readers currently in the database, however, can finish. Thus, no
starvation of either the readers or writers, which is inherent in
simpler methods, will happen.

To keep this sample focused, the user interface is very simple. To run
this sample, type the following at the command prompt:

 READWRIT

You will see the values the readers put on the screen. These are a
running total of the threads that wrote to the database.

Additional reference words: 3.10

Sample: Using API Functions to Access the Registry
Article ID: Q96408
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The Registry Monkey is a simple utility which demonstrates
the Registry API functions needed to access the NT Registry.
Monkey can be used to climb up and down the various branches
of the Registry tree, displaying the individual key's data
values. Monkey can also be used to print specified trees to
a file named Registry.txt.

The Registry Monkey sample can be found in the
More Information:

To use: start an instance of the Monkey. A dialog box will
appear with several edit fields, list boxes and buttons.
The listbox in the center of the dialog box (labeled CHILD
KEYS: at the bottom) will always hold the child keys of the
current key. Initially it has four entries, representing
the four pre-defined key handles of the Registry:
HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER, HKEY_USERS, and
HKEY_CLASSES_ROOT. If you double click on any of these
entries, or high light it and press the "Next/Down" button;
the key that you just selected will appear in the edit field
"Key Name", and the children of that selected key will
replace the entries in "CHILD KEYS:" list box. I.e. if you
select HKEY_LOCAL_MACHINE, that name will be present in "Key
Name", and it's children will appear in the list box:
HARDWARE, SECURITY, SOFTWARE, and SYSTEM. To proceed deeper
into the tree, double click another child. To back out of
the Registry, double click on the ".." at the top of the
listbox, or press the "Back/Up" button.

If the current key has values associated with it, the name
of the values will be listed in the right hand listbox
(labeled "VALUES:"). If it has now values, "VALUES:" will
be followed by a "0". Once you come upon a key that does
have values associated with it, you can double click on any
of the values in this list box. At the bottom of the dialog
box are two edit fields: "Value: Data Type", and "Value:
Data Entry". By double clicking a value entry, these edit
fields will be filled in the data's type and the data's
value. I.e. if you follow the tree down to
HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System; and double
click on the entry "1) Identifier", the "Value: Data Type"
field will be filled with "REG_SZ: A null-terminated Unicode
string"; and the "Value: Data Entry" may be filled in with
something such as "AT/AT COMPATIBLE"

If the current key has a Class type associated with it, it
will appear in the "Class" edit field. The "ACL" edit field
is not implemented with this release of the Registry Monkey.

You can use the Registry Monkey to write any part of the
Registry Tree to a file called REGISTRY.TXT. To do this,
select either the "Full" or "Trimmed" buttons (this
specifies either writing all of the key entries, or only
those having Value data associated with them); and press the
"Print Branch" button. The Registry Monkey will begin at
the current branch, and will proceed recursively down the
branches to the end of the tree, writing the information to
the file. To write the entire tree, print each of the four
pre-defined keys. Note, this can make for a rather large
file (700Kb at the time this was written).

Sample: Fractal Screen Saver Demonstration
Article ID: Q96409
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The FRACTAL screen saver sample draws the Mandelbrot Set on the
screen, then saves the picture in the path as specified in the
configuration dialog box. The default path is C:\FRACTAL.BMP.

When it is done, the screen saver animates the palette (for
palette-manageable devices only.)

Users can specify the area of the Mandelbrot Set to draw as well as
the number of iterations.

To install the screen saver, copy the executable FRACTAL.SCR to the
.\NT\SYSTEM32 directory. Then install the screen saver in Control
Panel.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

Additional reference words: 3.10

Sample: Using Semaphores to Control Threads
Article ID: Q96410
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The SEMAPHOR sample application shows how to control four
threads with a semaphore. It demonstrates this by having
four threads competing for the right to draw their color to
a rectangle in the center of the window. Access to the
center area is controlled by the semaphore.

More Information:

When you start the application you will see five rectangles:
a dynamic rectangle in the center (always changing color),
and four static rectangles surrounding it. Each of the four
rectangles has its own color: red, blue, green, and gray.
The one in the center alternates between these colors.

The four static rectangles represent four threads. These
four threads compete for the rectangle in the middle, and
their access is controlled by the semaphore. When a thread
gains control of the semaphore, it gets to draw its color in
the center rectangle. (Note: The threads do not actually
draw any of the four static rectangles. To make the code
simpler, this is handled in the WM_PAINT message in the
MainWndProc function. The rectangles are used only as visual
representations of the threads. The threads do, however,
draw the rectangle in the center with their specific color.)

The semaphore has a use count. When it is set to zero, any
thread can access the semaphore and execute the code within
its "semaphore gate" by using WaitForSingleObject. When the
thread gains control of the semaphore using this call, the
use count is incremented by 1. When the thread is done
executing its code, it can call ReleaseSemaphore. This will
decrement the count by whatever value you indicate (this
code uses 1), signaling to any other thread that it may gain
control of the semaphore.

Note: Any thread that has access to the semaphore may
decrement the semaphore's use count with ReleaseSemaphore;
the thread does not have to have control of the semaphore at
the time.

In this code, the WM_CREATE message in MainWndProc creates a
semaphore. The four threads are then created, each waiting
on the semaphore.

Each of the threads loop, blocking on a WaitForSingleObject
call. Once any thread has set the use count to 0, the thread
gets to draw the center rectangle with its color and then
sleeps for half a second before freeing the semaphore again.
The thread then runs through the loop again.

Additional reference words: CreateSemaphore WaitForSingleObject
ReleaseSemaphore 3.10

Sample: Demonstration of Opening and Terminating a Process
Article ID: Q96412
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

This simple piece of code demonstrates how to open and terminate a
process in situations where it is impossible to do so otherwise.
PSTAT.EXE can be used to obtain the process ID (PID) of the process to
be terminated. Note that the application does the decimal-hexadecimal
conversion as is necessary.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

Additional reference words: dec-hex

Sample: Using TLS to Store Thread-Specific Data in a DLL
Article ID: Q96413
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The TLS sample demonstrates using thread local storage (TLS) to store
thread-specific data in a dynamic-link library (DLL). As each thread
attaches, the memory is alloc'd and filled. As each thread detaches,
it is retrieved; as the process detaches, the TLS is freed.

This is a very basic sample, and the calls into the DLL that cause TLS
to be allocated and filled don't really do anything; however, this
should be a good basis on which to build TLS.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

Additional reference words: 3.10

Sample: World Coordinate Transforms
Article ID: Q96414
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The WORLD sample demonstrates how an image can be translated and
scaled using SetWorldTransform(). The image is read from the metafile.

After the application is started, choose Open from the Metafile menu
to specify which metafile should be used. The image is displayed, and
the horizontal and vertical scroll boxes ("thumbs") are set to the
middle of the scroll bars. Use the scroll bars to translate the image.
To scale the image, select the Scale menu option and choose the
desired horizontal and vertical scaling factors from the list boxes.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. Samples are divided into two groups: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory, and small
samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The sample metafile SAMPLE.EMF was created using code from the Win32
"Programmer's Reference: Overviews" manual, Chapter 74, "Metafiles."
PlayEnhMetafile() is used in the WM_PAINT case to display the image
stored in the metafile.

SetWorldTransform() takes two parameters: a device context and a
structure that defines the transform to be applied. The transform
contains six fields, which have the following use in this program:

 eM11 : Horizontal scaling factor
 eM12 : Not used
 eM21 : Not used
 eM22 : Vertical scaling factor
 eDx : Horizontal translation
 eDy : Vertical translation

The WM_HSCROLL and WM_VSCROLL cases are handled like they are handled
in any of the other samples, except that ScrollWindow() is not used to
update the window contents. Instead, the appropriate modification is
made to the transform, and InvalidateRect() is called to update the
window.

When the OK button is chosen in the Scale Image dialog box, the
transform is updated and InvalidRect() is called to update the window.

Additional reference words: 3.10 scrollbar listbox

SAMPLE: Primitive Drag and Drop Unicode Input Method
Article ID: Q96415
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The UNIPUT sample provides a primitive, mouse-based input method. It
allows the user to grab any character covered by a Unicode font, and
to drag the character to a second window. If the user drops the
character on the second window, that window is sent a WM_CHAR message
with the appropriate key code.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. Samples are divided into two groups: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory, and small
samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

In the UNIPUT sample, the status bar at the bottom of the window shows
three fields of information: the title of the last window to receive a
WM_CHAR message is on the left; the type of that window, either
Unicode or ANSI, is in the center; a list of the most recently dropped
characters, sort of a history buffer, is on the right.

There is an online help file containing more information.

Notice:

There is a font distributed on the Win32 SDK disk which covers
more than one thousand unicode characters. In order to use this
application to its full potential, you will want to install that
font using the Control Panel, Fonts item. The font is named
L_10646.TTF.

Additional reference words: 3.10

Sample: WINDIFF Source Included as an SDK Sample
Article ID: Q97655
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

WINDIFF compares directories or files giving a graphic comparison.

Full command-line syntax:

 WINDIFF [paths] [saveoption]

[paths]

 path
 To compare what is at path with what is in the current
 directory.

 path1 path2
 To compare what is at path1 with what is at path2.

Note: Path can always be relative or absolute, net or local, file or
directory.

[saveoption] = -slrd savefile

 Where slrd is any combination of these four letters (s, l, r, d) to
 write the names of files that are:

 s - The same in both paths.
 l - Only in the left-hand path.
 r - Only in the right-hand path.
 d - In both paths, but the two files are different.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. Samples are divided into two groups: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory, and small
samples available on the CD in the \Q_A\SAMPLES directory.

More Information:

The following information summarizes WINDIFF's use of color and its
menu items:

[Colors]

 RED background designates text from left file.
 YELLOW background designates text from right file.
 BLUE text designates a moved line.
 BLACK text is used for everything else.

[File menu]

 Compare files...
 Uses the File Open dialog box for each of two files to be
 compared.
 Compare directories
 Opens a dialog box to allow entry of two directory names for
 comparison.
 Close
 Closes the current files.
 Abort
 Will be unavailable (grayed) unless an operation is in progress;
 then, allows that operation to be terminated before completion.
 Save File List
 Allows the list of files that are (the same, different, only in
 left or only in right) to be saved.
 Copy Files...
 Opens a dialog box allowing you to write the files to a disk.
 Print
 Prints out the results of the compare.

[View menu]

 Outline
 Show lists of files.
 Expand
 Show comparison of selected files.
 Picture
 Show picture as well as selected files.
 Previous Change (F7)
 Skip to previous point of difference in the file.
 Next change (F8)
 Skip to next point of difference in the file.

[Expand menu]

 Left file only
 Show only lines from left file (but colored so as to highlight
 changed lines).
 Right file only
 Show only lines from right file (but colored so as to highlight
 changed lines).
 Both files (default)
 Show a merge of both files. All the lines in the left file are
 shown in the order in which they occur in that file, likewise
 for the right file. Lines that are ONLY in the left file are
 shown in red. Lines that are ONLY in the right file are shown
 in yellow.
 Left line numbers
 Line numbers are shown, based on the left file.
 Right line numbers
 Line numbers are shown, based on the right file.
 Right line numbers
 Line numbers are shown, based on the right file.
 No line numbers
 Line numbers are turned off.

[Options menu]

 Ignore blanks
 Blanks are ignored in the expanded view, so that lines that
 differ only in white space are shown as identical.
 Show Identical Files
 Include files that are identical in each path in outline mode.
 Show Left-Only Files
 Include files that occur only in the left path in outline mode.
 Show Right-Only Files
 Include files that occur only in the right path in outline mode.
 Show Different Files
 Include files that occur in both paths, but which are not the
 same in outline mode.

[Help]

 About
 Displays version information about WINDIFF.

Additional reference words: 3.10

SAMPLE: Monitoring System Events
Article ID: Q97656
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

SUMMARY
=======

This sample uses a variety of thread-specific hook procedures to
monitor the system for events affecting a thread. The sample
demonstrates how to process events for the following types of hook
procedures:

 WH_CALLWNDPROC
 WH_CBT
 WH_DEBUG
 WH_GETMESSAGE
 WH_KEYBOARD
 WH_MOUSE
 WH_MSGFILTER

HOOKS is included with the Microsoft Win32 Software Development Kit
(SDK) for Windows NT. Samples are divided into two groups: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory, and small
samples available on the CD in the \Q_A\SAMPLES directory.

MORE INFORMATION
================

In this sample, the user can install and remove a hook procedure by
using the menu. When a hook procedure is installed and an event that
is monitored by the procedure occurs, the procedure writes information
about the event to the client area of the application's main window.

Additional reference words: 3.10
KBCategory:
KBSubcategory:

SAMPLE: Examining Security Descriptors (SDs)
Article ID: Q97657
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

In the Win32 .HLP file, if you click Search, then "Security Overview,"
and then from the list of topics under Security Overview choose the
subtopic "Allowing Access," you will find the comment:

 Note: It is fine to write code like this that builds security
 descriptors from scratch. It is, however, a good practice for
 people who write code that builds or manipulates security
 descriptors to first write code that explores the default security
 descriptors that Windows NT places on objects. For example, if
 Windows NT by default includes in a DACL an ACE granting the Local
 Logon SID certain access, it's good to know that, so that a
 decision not to grant any access to the Local Logon SID would be a
 conscious decision.

Purpose of This Sample

The comment in the .HLP file is accurate; however, for many people the
task of examining the security descriptor (SD) is easier if there is
sample code to start from. Therefore, the purpose of this sample is to
provide sample code for use as a starting point from which to examine
SD(s). This sample examines the SD on files; this code can be modified
to examine the SD on other objects.

This sample is not a supported utility.

To Run the Sample

Type Check_sd to check the SD on the \\.\A: device.

Type Check_sd d:\a.fil to check the SD on the d:\a.fil file. In this
case, drive D must be formatted NTFS, because only NTFS files have
SD(s).

Further Notes

 - If you recompile with the define set as follows

 #define I_DO_NOT_WANT_THIS_CODE_TO_CLUTTER_THIS_PROGRAM_S_OUTPUT (1==0)

 and re-run the program, the program will produce more output,
 including displaying all the information you can access in a Win32

 program from the process's Access Token, and the SDs of some
 sample objects.

 - If you log on, run with the program built to produce the extra
 output as mentioned just above, save that output to a file, then
 log off and re-run the program, save the output of this second run
 to a different file. With WinDiff, you can easily observe how the
 local logon SID really does change values for each logged on
 session.

 - A sample test you could run to exercise DACLs involves using the
 \Q_A\SAMPLES\SD_FLPPY sample in conjunction with this check_sd
 sample.

 - Perform the following series of steps:

 1. Log on to a machine as a local Administrator.

 2. Do the following:

 check_sd \\.\A: >out_bef.a
 check_sd \\.\B: >out_bef.b

 3. Log off.

 4. Log on to the same machine as Guest on the local machine domain.

 5. Do the following:

 sd_flppy

 6. Try the following:

 dir a: (observe access denied)
 dir b: (observe access denied)
 copy config.sys a:\ (get device not found)
 copy config.sys b:\ (get device not found)

 7. Log off.

 8. Log on to the same machine as a local Administrator.

 9. Do the following:

 check_sd \\.\A: >out_aft.a
 check_sd \\.\B: >out_aft.b

 10. Browse the differences between OUT_BEF.* and OUT_AFT.*

 - The above sample test demonstrates that the ACLs that sd_flppy
 applies survive logoffs. To demonstrate the DACLs do not survive
 rebooting, simply reboot, log back on as a local Administrator, and

 check_sd \\.\A: >out_rbt.a
 check_sd \\.\B: >out_rbt.b

 to see the DACLs are again as they were in the following:

 out_bef.a
 out_bef.b

Additional reference words: 3.10

Sample: Using Based Pointers to Share Memory
Article ID: Q97658
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SUMMARY
=======

When several processes need to access shared data, there is no
guarantee that the shared memory is mapped to the same locations in
all processes. This can cause a problem when the data contains
relative pointers because a pointer value that is valid in one
process's context may not be valid in the context of the other
processes.

BPOINTER is a sample that demonstrates the use of based pointers to
allow manipulation of shared data from several processes using memory
mapped files. This technique is applicable to all forms of shared
memory.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. Samples are divided into two groups: samples
(optionally) installed into the \MSTOOLS\SAMPLES directory, and small
samples available on the CD in the \Q_A\SAMPLES directory.

MORE INFORMATION
================

The sample contains the following modules:

 READDATA.EXE A console process that allows you to view the shared
 data; it dereferences pointers as it encounters them.
 CHGDATA.EXE A console process that lets you add elements to a shared
 linked list.

Note, however, that based pointers reduce the performance of the
application using the pointers because the pointers must be resolved
at run time; that is, each access typically adds one machine
instruction overhead when dereferencing a pointer.

Once the files are compiled, execute CHGDATA.EXE and follow the
instructions posted there.

Additional reference words: 3.10

SAMPLE: Event Logging
Article ID: Q98613
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

Summary:

The sample called LOGGING shows how to do event logging. The sample
demonstrates how to set up the proper registry entries to register
your message dynamic-link library (DLL), how to make the actual
event-log entries, and how to pull event-log data from the event log.

This sample is included with the Microsoft Win32 Software Development
Kit (SDK) for Windows NT. The samples are divided into two groups:
samples (optionally) installed into the \MSTOOLS\SAMPLES directory,
and small samples available on the CD in the \Q_A\SAMPLES directory.

Additional reference words: 3.10

Sample: Combo Boxes and Owner-Draw Techniques
Article ID: Q99462

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The OWNCOMBO sample application illustrates the use of functions and
messages for combo boxes and owner-draw techniques. The user interface
of this sample application is self-explanatory, except perhaps for the
dialog box that is created in response to the "Drop Down Combo Box"
menu item. This readme file provides an explanation of this portion of
the sample's user interface, to help you better interpret the source
code.

When using this dialog box, the buttons send various messages to the
combo box and the edit control. These buttons allow the user to vary
the data sent with each message.

The following actions are performed by the buttons:

Unsl All: This button clears (unselects) any selection in the combo box.

Sel No: This button takes an integer value from the edit control and
 attempts to select an entry in the combo box given this index
 value.

Sel Txt: This button takes a text string from the edit control and
 attempts to select the item with the given text prefix.

Find Txt: This button searches for the text given in the edit control
 and returns the item number where it was found in the combo
 box.

Cb Dir: This button appends a directory listing of the current directory
 into the combo box.

Clr It: This button clears all the items in the combo box.

Add It: This button takes the string given in the edit control and adds
 it to the combo box.

Del It: This button deletes the currently selected item from the combo
 box.

Cpy It: This button copies the currently selected item in the combo box
 to the edit control.

Combo Notifications Check Box:

When this box is checked, a message box appears showing what
notification codes the combo box is returning to the application in
response to the messages sent by the buttons.

Additional reference words: 3.10

SAMPLE: Demonstration of the Windows Sockets API
Article ID: Q99463
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1
--

Summary:

The WSOCK sample demonstrates the basics of sockets programming,
specifically for Windows Sockets. It demonstrates how to accept
incoming connections (via the Windows Sockets Asynchronous Extension
APIs, threads, and traditional BSD-style blocking calls) and how to
connect to remote hosts. Once connected, the user can send a text
string to the remote host. WSOCK also allows the user to view
information on a user-entered host name.

More Information:

For the program to operate correctly, the TCP/IP protocol must be
properly installed. Also, if two machines are used over a network,
both machines must have a "HOSTS" text file (for Windows NT machines,
this file is located in %SYSTEMROOT%\SYSTEM32\DRIVERS\ETC\HOSTS; if
TCP/IP is installed onto a Windows for Workgroups machine, the HOSTS
file is located in C:/WINDOWS/HOSTS). Within each HOSTS file, both the
remote and local addresses of both machines must be listed.

WSOCK can run on a single machine (execute two copies of WSOCK) or
over a network with two Win32 machines. The following example explains
how two separate machines over a network would test WSOCK:

1. Machine "Bob" executes a copy of WSOCK.

2. Machine "Fred" executes a copy of WSOCK.

3. Machine "Bob" chooses one of the Listen menu options (under
 WinSock) [Listen (Blocking), Listen With Threads, or Async Listen].

4. Machine "Fred" selects the Connect menu option (under WinSock).

5. Machine "Bob" enters "12" as a TCP port number.

6. Machine "Bob" waits for a connection.

7. Machine "Fred" enters "Bob" as the host name to connect to.

8. Machine "Fred" enters "12" as a TCP port number.

Both machines are now connected and can send strings back and forth by
using the WinSock Send Message menu option.

If "Bob" exits WSOCK while there is a connection, "Fred" will receive
a message box notification.

Windows Sockets calls used:

 accept
 closesocket
 connect
 gethostbyname
 getservbyname
 htons
 listen
 send
 recv
 WSAAsyncSelect
 WSACleanup
 WSAStartup

Additional reference words: 3.1

